Making Causal Critiques Day 2 - Fundamental Critiques

Jonathan Phillips

January 29, 2019

Door-to-door political campaigning works

- Door-to-door political campaigning works
- Proportional Representation electoral systems have more parties

- Door-to-door political campaigning works
- Proportional Representation electoral systems have more parties
- Democracies do not go to war with each other

- Door-to-door political campaigning works
- Proportional Representation electoral systems have more parties
- Democracies do not go to war with each other
- Development helps democracies endure

- Door-to-door political campaigning works
- Proportional Representation electoral systems have more parties
- Democracies do not go to war with each other
- Development helps democracies endure
- ...And that's about it

 Thousands of books and papers have not generated any knowledge about what explains political processes

- Thousands of books and papers have not generated any knowledge about what explains political processes
 - Many add descriptive knowledge

- Thousands of books and papers have not generated any knowledge about what explains political processes
 - Many add descriptive knowledge
 - Many investigate specific events, not generalizable variables

- Thousands of books and papers have not generated any knowledge about what explains political processes
 - Many add descriptive knowledge
 - Many investigate specific events, not generalizable variables
 - Many highlight correlations between variables

3 Critiques

Learning from Data

Why aren't case studies enough?

Introduction	Causal Inference	3 Critiques	Observational Data
Learning from D	ata		

- Why aren't case studies enough?
 - If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?

Introduction	Causal Inference	3 Critiques	Observational Data
Learning from D	ata		

- Why aren't case studies enough?
 - If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - Yes! But that's not sufficient

- Why aren't case studies enough?
 - If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - Yes! But that's not sufficient
- The problem is that there are many variables that could explain success

- Why aren't case studies enough?
 - If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - Yes! But that's not sufficient
- The problem is that there are many variables that could explain success
- And detailed case studies can help us identify plausible hypotheses

- Why aren't case studies enough?
 - If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - Yes! But that's not sufficient
- The problem is that there are many variables that could explain success
- And detailed case studies can help us identify plausible hypotheses
- But the only way to *confirm* the hypothesis is to verify that:

- Why aren't case studies enough?
 - If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - Yes! But that's not sufficient
- The problem is that there are many variables that could explain success
- And detailed case studies can help us identify plausible hypotheses
- But the only way to *confirm* the hypothesis is to verify that:
 - 1. In other cases, the presence of the condition also produces the same outcome (if not, the explanation is not sufficient)

- Why aren't case studies enough?
 - If we want to know why some countries are more successful democracies than others, surely we have to examine the successful countries in detail?
 - Yes! But that's not sufficient
- The problem is that there are many variables that could explain success
- And detailed case studies can help us identify plausible hypotheses
- But the only way to *confirm* the hypothesis is to verify that:
 - 1. In other cases, the presence of the condition also produces the same outcome (if not, the explanation is not sufficient)
 - The absence of the condition does not produce the same outcome (if not, the explanation is not necessary)

 For example, we could look at India and conclude large Asian countries produce successful democracies

- For example, we could look at India and conclude large Asian countries produce successful democracies
 - But...China

- For example, we could look at India and conclude large Asian countries produce successful democracies
 - But...China
 - But...Costa Rica

- For example, we could look at India and conclude large Asian countries produce successful democracies
 - But...China
 - But...Costa Rica
- Only by looking at other cases, particularly 'control' cases (small non-Asian countries) can we understand if this explanation is plausible

Even when we compare multiple cases:

- Even when we compare multiple cases:
- Correlation is not causation

- Even when we compare multiple cases:
- Correlation is not causation
 - If we look hard enough we can always find correlations

- Even when we compare multiple cases:
- Correlation is not causation
 - If we look hard enough we can always find correlations
 - By chance...

- Even when we compare multiple cases:
- Correlation is not causation
 - If we look hard enough we can always find correlations
 - By chance...
 - Due to complex social patterns...

- Even when we compare multiple cases:
- Correlation is not causation
 - If we look hard enough we can always find correlations
 - By chance...
 - Due to complex social patterns...
 - But we cannot conclude that there is a causal effect of D on Y

Even when we compare multiple cases:

Correlation is not causation

- If we look hard enough we can always find correlations
- By chance...
- Due to complex social patterns...
- But we cannot conclude that there is a causal effect of D on Y
- More data will not help

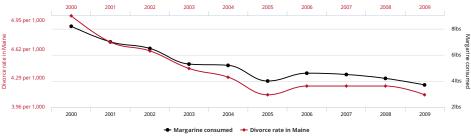
Even when we compare multiple cases:

Correlation is not causation

- If we look hard enough we can always find correlations
- By chance...
- Due to complex social patterns...
- But we cannot conclude that there is a causal effect of D on Y
- More data will not help
- The problem is the type of data; it does not allow us to answer the causal question

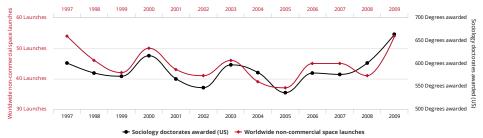
Divorce rate in Maine correlates with

Per capita consumption of margarine

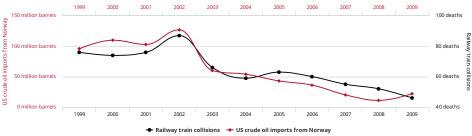


Worldwide non-commercial space launches

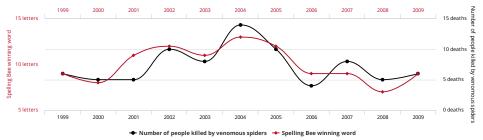
Sociology doctorates awarded (US)



US crude oil imports from Norway correlates with Drivers killed in collision with railway train



Letters in Winning Word of Scripps National Spelling Bee correlates with Number of people killed by venomous spiders



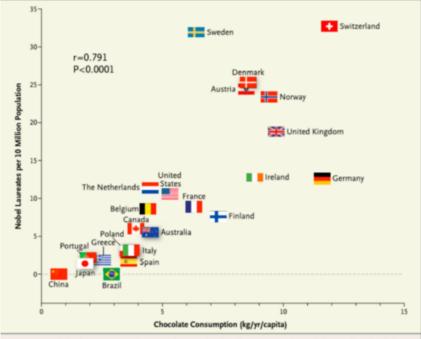


Figure 1. Correlation between Countries' Annual Per Capita Chocolate Consumption and the Number of Nobel Laureates per 10 Million Population.

Why isn't correlation enough?

Why isn't correlation enough?

 For prediction, correlation is fine: If we know a country has chocolate consumption of 10kg/yr/capita we can confidently predict it will have about 25 Nobel Laureates

Why isn't correlation enough?

- For prediction, correlation is fine: If we know a country has chocolate consumption of 10kg/yr/capita we can confidently predict it will have about 25 Nobel Laureates
- But for *intervention*, correlation does not help: forcing people to eat more chocolate does nothing on its own to produce more Nobel Laureates

Why isn't correlation enough?

- For prediction, correlation is fine: If we know a country has chocolate consumption of 10kg/yr/capita we can confidently predict it will have about 25 Nobel Laureates
- But for *intervention*, correlation does not help: forcing people to eat more chocolate does nothing on its own to produce more Nobel Laureates
- So if we want to provide policy-relevant advice, we need to know more than just correlation

- Why isn't correlation enough?
 - For explanation, correlation also fails it is no explanation to say that Switzerland has the most Nobel Laureates because it has the highest chocolate consumption
 - Explanation means identifying the *direct* and *local* factors that generate Nobel Laureates

Why isn't correlation enough?

- Why isn't correlation enough?
 - People are strategic, so their behaviour changes

- Why isn't correlation enough?
 - People are strategic, so their behaviour changes
- The Lucas Critique: Correlations fall apart when we intervene with policy
 - The data shows no-one lies on their tax forms

- Why isn't correlation enough?
 - People are **strategic**, so their behaviour changes
- The Lucas Critique: Correlations fall apart when we intervene with policy
 - The data shows no-one lies on their tax forms
 - So let's abandon tax checks; the government wants to save money

- Why isn't correlation enough?
 - People are strategic, so their behaviour changes
- The Lucas Critique: Correlations fall apart when we intervene with policy
 - The data shows no-one lies on their tax forms
 - So let's abandon tax checks; the government wants to save money
 - But reducing checks reduces the chances of getting caught

- Why isn't correlation enough?
 - People are strategic, so their behaviour changes
- The Lucas Critique: Correlations fall apart when we intervene with policy
 - The data shows no-one lies on their tax forms
 - So let's abandon tax checks; the government wants to save money
 - But reducing checks reduces the chances of getting caught
 - Citizens start to lie on their tax forms

- Why isn't correlation enough?
 - People are strategic, so their behaviour changes
- The Lucas Critique: Correlations fall apart when we intervene with policy
 - The data shows no-one lies on their tax forms
 - So let's abandon tax checks; the government wants to save money
 - But reducing checks reduces the chances of getting caught
 - Citizens start to lie on their tax forms
- That means we need to understand what *causes* people to lie on tax forms, so we can better understand their behaviour

Introduction	Causal Inference	3 Critiques	Observational Data

To accumulate knowledge, we have to ask specific types of questions:

Introduction	Causal Inference	3 Critiques	Observational Data
Learning from D	ata		

- To accumulate knowledge, we have to ask specific types of questions:
 - Specifically, about the effects of causes

- To accumulate knowledge, we have to ask specific types of questions:
 - Specifically, about the effects of causes

Causes of Effects	Effects of Causes
What caused Y?	Does X cause Y?
Why did the United States grow faster than Bolivia in the twentieth century?	Did the more permanent colonial settlement of the United States compared to Bolivia affect their sub- sequent growth rates?

Introduction	Causal Inference	3 Critiques	Observational Data
Causal Infere	ence		

A focus on a single explanatory variable D requires us to clearly define this 'treatment'

Introduction	Causal Inference	3 Critiques	Observational Data
Causal Inferer	ice		

- A focus on a single explanatory variable D requires us to clearly define this 'treatment'
- AND to clearly define a control

Introduction	Causal Inference	3 Critiques	Observational Data
Causal Infore	nco		

Causal interence

- A focus on a single explanatory variable D requires us to clearly define this 'treatment'
- AND to clearly define a control
 - What is the opposite of investing \$1bn in education?

Introduction	Causal Inference	3 Critiques	Observational Data
Causal Infere	nce		

- A focus on a single explanatory variable D requires us to clearly define this 'treatment'
- AND to clearly define a control
 - What is the opposite of investing \$1bn in education?
 - No investment, or investing it elsewhere?

Introduction	Causal Inference	3 Critiques	Observational Data

- A focus on a single explanatory variable D requires us to clearly define this 'treatment'
- AND to clearly define a control
 - What is the opposite of investing \$1bn in education?
 - No investment, or investing it elsewhere?
- Define treatment:

 $D_i = \begin{cases} 1, \text{ if treated} \\ 0, \text{ if not treated} \end{cases}$

Defining our outcome is also crucial:

- Defining our outcome is also crucial:
 - Can we measure our outcome of interest?

- Defining our outcome is also crucial:
 - Can we measure our outcome of interest?
 - Is that outcome the end of the causal chain?

- Defining our outcome is also crucial:
 - Can we measure our outcome of interest?
 - Is that outcome the end of the causal chain?
 - Tempting to look at many outcomes, but the risk of cherry-picking

- Defining our outcome is also crucial:
 - Can we measure our outcome of interest?
 - Is that outcome the end of the causal chain?
 - Tempting to look at many outcomes, but the risk of cherry-picking
 - If we study 20 outcomes, on average one will show a significant effect even with no real causal effect

The causal effect of treatment is how each unit's outcome differs when it is treated and not treated

- The causal effect of treatment is how each unit's outcome differs when it is treated and not treated
- > This means comparing the **potential outcomes** for unit *i*:

 $Y_{Di} = \begin{cases} Y_{1i} \text{ Potential Outcome if unit i treated} \\ Y_{0i} \text{ Potential Outcome if unit i not treated} \end{cases}$

• Treatment Effect = $Y_{1i} - Y_{0i}$

Introduction	Causal Inference	3 Critiques	Observational Data
Causal Inferen	се		

Introduction	Causal Inference	3 Critiques	Observational Data
Causal Infere	ence		

► We are relying on **counterfactuals**

What would have happened to the same unit if the treatment had not happened?

Introduction	Causal Inference	3 Critiques	Observational Data

- What would have happened to the same unit if the treatment had not happened?
- Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?

Introduction	Causal Inference	3 Critiques	Observational Data

- What would have happened to the same unit if the treatment had not happened?
- Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?
- Would people have voted for Brexit if the campaign had been better regulated?

- What would have happened to the same unit if the treatment had not happened?
- Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?
- Would people have voted for Brexit if the campaign had been better regulated?
- Would Brazil have won the 2014 World Cup if Neymar had not been injured?

- What would have happened to the same unit if the treatment had not happened?
- Would World War I still have happened if Archduke Franz Ferdinand had not been assassinated in 1914?
- Would people have voted for Brexit if the campaign had been better regulated?
- Would Brazil have won the 2014 World Cup if Neymar had not been injured?
- To explain a class of events not a single event we need multiple counterfactual comparisons

▶ We want to know how D affects Y

- ▶ We want to know how D affects Y
- eg. how a proportional representation electoral system affects investment in education

- We want to know how D affects Y
- eg. how a proportional representation electoral system affects investment in education
 - The treatment is a change to a PR electoral system (vs FPTP)

- We want to know how D affects Y
- eg. how a proportional representation electoral system affects investment in education
 - The treatment is a change to a PR electoral system (vs FPTP)
 - The outcome is the level of investment in education

Potential Outcomes Example

	Investment in Education if PR	Investment in Education if NOT PR	
	Y ₁	Y ₀	Treatment Effect
Brasil	8	4	4
Argentina	10	7	3
Bolivia	2	4	-2
Colombia	11	11	0
Peru	6	2	4

► The Fundamental Problem of Causal Inference

► The Fundamental Problem of Causal Inference

No units can receive **both** treatment and control

► The Fundamental Problem of Causal Inference

- No units can receive **both** treatment and control
- ▶ So we can never observe both Y₁ and Y₀ for the same unit

Potential Outcomes Example

	PR Sys- tem?	Investment in Education if PR	Investment in Education if NOT PR	
	Di	Y ₁	Y ₀	Treatment Effect
Brasil	1	8	?	?
Argentina	1	10	?	?
Bolivia	0	?	4	?
Colombia	0	?	11	?
Peru	0	?	2	?

 We can't even look at the change in countries that switch to a PR system

- We can't even look at the change in countries that switch to a PR system
 - What if **all** countries had started to invest more in education at the same time, for different reasons?

- We can't even look at the change in countries that switch to a PR system
 - What if **all** countries had started to invest more in education at the same time, for different reasons?
 - The potential outcome for Country X in time 1 is different to at time 2

So we need to consider the exact counterfactual - what would have happened if the country had not switched to a PR system?

- So we need to consider the exact counterfactual what would have happened if the country had not switched to a PR system?
 - This is impossible to know

- So we need to consider the exact **counterfactual** what would have happened if the country had **not** switched to a PR system?
 - This is impossible to know
 - We can only *estimate* the effect by comparing **across** units in some way

- So we need to consider the exact counterfactual what would have happened if the country had not switched to a PR system?
 - This is impossible to know
 - We can only *estimate* the effect by comparing **across** units in some way
 - That is why we are doing causal inference, not causal proof

Introduction	Causal Inference	3 Critiques	Observational Data

Which comparisons to make?

- Which comparisons to make?
- Control units can never be perfect substitutes

- Which comparisons to make?
- Control units can never be perfect substitutes
- Causal Inference is all about identifying a plausible counterfactual

- Which comparisons to make?
- Control units can never be perfect substitutes
- Causal Inference is all about identifying a plausible counterfactual
- Plausible means that the potential outcomes of the control unit are likely to be the same as those of the treated unit

Introduction	Causal Inference	3 Critiques	Observational Data
Causal Inference	e		

 The comparability of treatment and control units depends on *how* they got to be treated

Introduction	Causal Inference	3 Critiques	Observational Data
Causal Inferer	nce		

- The comparability of treatment and control units depends on *how* they got to be treated
 - On the Treatment Assignment Mechanism

Introduction	Causal Inference	3 Critiques	Observational Data
Causal Inference	e		

- The comparability of treatment and control units depends on *how* they got to be treated
 - On the Treatment Assignment Mechanism
- If we 'treated' an outlier like the Galapagos Islands, could we find a comparable control unit?

Introduction	Causal Inference	3 Critiques	Observational Data
Causal Infere	ence		

- The comparability of treatment and control units depends on *how* they got to be treated
 - On the Treatment Assignment Mechanism
- If we 'treated' an outlier like the Galapagos Islands, could we find a comparable control unit?
- Comparisons are 'better' where the Treatment Assignment Mechanism is independent of potential outcomes

Introduction	Causal Inference	3 Critiques	Observational Data
Causal Inference	٩		

- The comparability of treatment and control units depends on *how* they got to be treated
 - On the Treatment Assignment Mechanism
- If we 'treated' an outlier like the Galapagos Islands, could we find a comparable control unit?
- Comparisons are 'better' where the Treatment Assignment Mechanism is independent of potential outcomes
 - I.e. Whether you got treatment had **nothing** to do with how much you would benefit from treatment
 - This makes it more likely that potential outcomes are 'balanced'

 A 'real-world' treatment assignment is *highly unlikely* to create comparable potential outcomes

- A 'real-world' treatment assignment is *highly unlikely* to create comparable potential outcomes
- And we do not know what the treatment assignment mechanism was
 - Because we did not control treatment assignment ourselves

- A 'real-world' treatment assignment is *highly unlikely* to create comparable potential outcomes
- And we do not know what the treatment assignment mechanism was
 - Because we did not control treatment assignment ourselves

- A 'real-world' treatment assignment is *highly unlikely* to create comparable potential outcomes
- And we do not know what the treatment assignment mechanism was
 - Because we did not control treatment assignment ourselves
- So we do not know which units might be appropriate counterfactuals

- Causal Inference
 - With complete information on potential outcomes, calculating treatment effects is trivial

Potential Outcomes Example

	Investment in Education if PR	Investment in Education if NOT PR	
	Y ₁	Y ₀	Treatment Effect
Brasil	8	4	4
Argentina	10	7	3
Bolivia	2	4	-2
Colombia	11	11	0
Peru	6	2	4

From observed outcomes can we calculate an Average Treatment Effect?

From observed outcomes can we calculate an Average Treatment Effect?

Calculating Treatment Effects

	D	<i>Y</i> ₁	Y ₀	Υ _i	Real Effect, $Y_1 - Y_0$
А	1	7	?	7	?
В	0	?	5	5	?
С	0	?	4	4	?
D	1	4	?	4	?

From observed outcomes can we calculate an Average Treatment Effect?

Calculating Treatment Effects

	D	Y ₁	<i>Y</i> ₀	Υ _i	Real Effect, $Y_1 - Y_0$
А	1	7	?	7	?
В	0	?	5	5	?
С	0	?	4	4	?
D	1	4	?	4	?
$E(Y_1) =$		5.5			
$E(Y_0) =$			4.5		

From observed outcomes can we calculate an Average Treatment Effect?

From observed outcomes can we calculate an Average Treatment Effect?

Calculating Treatment Effects

	D	<i>Y</i> ₁	Y ₀	Υ _i	Real Effect, $Y_1 - Y_0$
А	1	7	?	7	?
В	0	?	5	5	?
С	0	?	4	4	?
D	1	4	?	4	?

From observed outcomes can we calculate an Average Treatment Effect?

Calculating Treatment Effects

	D	Y ₁	<i>Y</i> ₀	Υ _i	Real Effect, $Y_1 - Y_0$
А	1	7	?	7	?
В	0	?	5	5	?
С	0	?	4	4	?
D	1	4	?	4	?
$E(Y_1) =$		5.5			
$E(Y_0) =$			4.5		

► If we use the control units as counterfactuals...

Introduction	Causal Inference	3 Critiques	Observational Data				
Problems wi	th Observational Da	ita					
 If we use the control units as counterfactuals Average Treatment Effect: 							
	ATE =	$E(Y_1) - E(Y_0)$	(1)				

5.5 – 4.5

1

► Half the true treatment effect

=

=

(2)

(3)

Introduction	Causal Inference	3 Critiques	Observational Data			
Problems wi	th Observational Da	ata				
 If we use the control units as counterfactuals Average Treatment Effect: 						
	ATE =	$E(Y_1) - E(Y_0)$) (1)			

5.5 - 4.5

1

Half the true treatment effect

=

=

► Why?

(2)

(3)

Introduction	Causal Inference	3 Critiques	Observational Data			
Problems with Observational Data						
 If we use the control units as counterfactuals Average Treatment Effect: 						

$$ATE = E(Y_1) - E(Y_0)$$
(1)
= 5.5 - 4.5 (2)
= 1 (3)

- Half the true treatment effect
- ► Why?
 - ► The units that got treated had lower Y₁
 - The units that were controls had higher Y₀

Introduction	Causal Inference	3 Critiques	Observational Data
Problems w	ith Observational Dat	a	
	e the control units as a reatment Effect:	counterfactuals	

$$ATE = E(Y_1) - E(Y_0)$$
(1)
= 5.5 - 4.5 (2)
= 1 (3)

- Half the true treatment effect
- ► Why?
 - The units that got treated had lower Y₁
 - The units that were controls had higher Y₀
 - The 'stand-in' counterfactuals were wrong

The bias in units' potential outcomes depends on which units get treated and which ones don't

- The bias in units' potential outcomes depends on which units get treated and which ones don't
- In observational studies, we have very little protection against causal critiques

- The bias in units' potential outcomes depends on which units get treated and which ones don't
- In observational studies, we have very little protection against causal critiques
 - 1. Omitted variable bias (confounding)
 - 2. Selection bias
 - 3. Reverse Causation

Introduction	Causal Inference	3 Critiques	Observational Data
Exercise			

Introduction	Causal Inference	3 Critiques	Observational Data
Exercise			

 Write down on a piece of paper a number between 0 and 10 representing how happy you would be if I gave you an apple now.

Introduction	Causal Inference	3 Critiques	Observational Data
Exercise			

- Does fruit make you happier?
 - Write down on a piece of paper a number between 0 and 10 representing how happy you would be if I gave you an apple now.
 - Label this number Y_1 .

Introduction	Causal Inference	3 Critiques	Observational Data
Exercise			

- Write down on a piece of paper a number between 0 and 10 representing how happy you would be if I gave you an apple now.
- ► Label this number Y₁.
- Then write down a second number between 0 and 10 representing how happy you would be if I did NOT give you an apple now.

Introduction	Causal Inference	3 Critiques	Observational Data
Exercise			

- Write down on a piece of paper a number between 0 and 10 representing how happy you would be if I gave you an apple now.
- Label this number Y_1 .
- Then write down a second number between 0 and 10 representing how happy you would be if I did NOT give you an apple now.
- Label this number Y_0 .

Introduction	Causal Inference	3 Critiques	Observational Data
Exercise			

- Write down on a piece of paper a number between 0 and 10 representing how happy you would be if I gave you an apple now.
- Label this number Y_1 .
- Then write down a second number between 0 and 10 representing how happy you would be if I did NOT give you an apple now.
- Label this number Y_0 .

These are your potential outcomes.

Introduction	Causal Inference	3 Critiques	Observational Data
Exercise			

 Now we will consider how estimates of the average effect of fruit on happiness vary depending on how treatment (apples) are assigned.

Introduction	Causal Inference	3 Critiques	Observational Data
Exercise			

- Now we will consider how estimates of the average effect of fruit on happiness vary depending on how treatment (apples) are assigned.
 - 1. All the female participants are given an apple.

Introduction	Causal Inference	3 Critiques	Observational Data
Exercise			

- Now we will consider how estimates of the average effect of fruit on happiness vary depending on how treatment (apples) are assigned.
 - 1. All the female participants are given an apple.
 - 2. The tallest half are given an apple.

Introduction	Causal Inference	3 Critiques	Observational Data

- Now we will consider how estimates of the average effect of fruit on happiness vary depending on how treatment (apples) are assigned.
 - 1. All the female participants are given an apple.
 - 2. The tallest half are given an apple.

Exercise

3. You are free to choose yourself to take an apple or not.

Introduction	Causal Inference	3 Critiques	Observational Data

Exercise

- Now we will consider how estimates of the average effect of fruit on happiness vary depending on how treatment (apples) are assigned.
 - 1. All the female participants are given an apple.
 - 2. The tallest half are given an apple.
 - 3. You are free to choose yourself to take an apple or not.
 - 4. Apples are distributed randomly

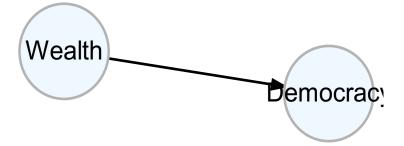
Wealthier countries are more likely to be democracies

- Wealthier countries are more likely to be democracies
 - But wealthier countries are more likely to be European

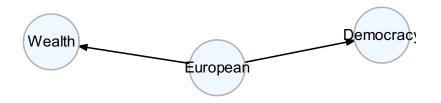
- Wealthier countries are more likely to be democracies
 - But wealthier countries are more likely to be European
 - And democracies are more likely to be European

- Wealthier countries are more likely to be democracies
 - But wealthier countries are more likely to be European
 - And democracies are more likely to be European
- Maybe the correlation just reflects the fact that European countries are 'different'?

3 Critiques



3 Critiques



Introduction	Causal Inference	3 Critiques	Observational Data

 Imagine a treatment assignment mechanism where all women get treated

Treatment Assignment by Covariate

	Х	D	<i>Y</i> ₁	<i>Y</i> ₀	Υ _i	Real Effect
А	Man	0	7	4	4	3
В	Man	0	9	5	5	4
С	Woman	1	4	4	4	0
D	Woman	1	4	3	4	1

Introduction	Causal Inference	3 Critiques	Observational Data

 Imagine a treatment assignment mechanism where all women get treated

Treatment Assignment by Covariate

	Х	D	Y ₁	Y ₀	Yi	Real Effect
А	Man	0	7	4	4	3
В	Man	0	9	5	5	4
С	Woman	1	4	4	4	0
D	Woman	1	4	3	4	1
$E(Y_1) =$			4			
$E(Y_0) =$				4.5		

Introduction	Causal Inference	3 Critiques	Observational Data

 Imagine a treatment assignment mechanism where all women get treated

Treatment Assignment by Covariate

	Х	D	Y ₁	Y ₀	Υ _i	Real Effect
А	Man	0	7	4	4	3
В	Man	0	9	5	5	4
С	Woman	1	4	4	4	0
D	Woman	1	4	3	4	1
$E(Y_1) =$			4			
$E(Y_0) =$				4.5		

- ► ATE = 4 4.5 = -0.5
- This is confounding or an omitted variable another variable affects both treatment and potential outcomes ^{34/47}

Introduction	Causal Inference	3 Critiques	Observational Data
Self-Selecion	Bias		

 Selection Bias occurs where our data sample does not tell the complete story:

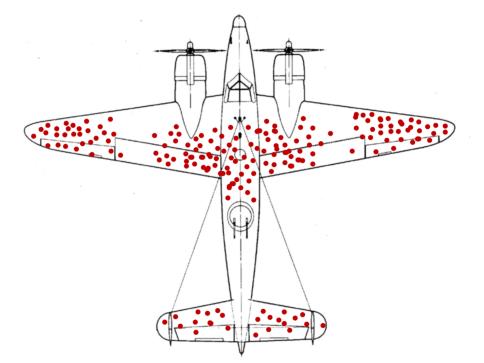
- Selection Bias occurs where our data sample does not tell the complete story:
 - 1. **Self-selection Bias:** Units that benefit most from treatment choose to receive treatment
 - ► Those with the biggest difference in potential values, $Y_1 Y_0$
 - 2. Data Availability Bias: Some types of units don't report data
 - ► For reasons related to the treatment and potential outcomes
 - 3. Survival Bias: Some types of units drop out of our sample
 - ► For reasons related to the treatment and potential outcomes

► Wealthier countries are more likely to be democracies

- ► Wealthier countries are more likely to be democracies
 - But wealthy autocracies and poor democracies do not like to report data

- ► Wealthier countries are more likely to be democracies
 - But wealthy autocracies and poor democracies do not like to report data
 - So we cannot compare them

- ► Wealthier countries are more likely to be democracies
 - But wealthy autocracies and poor democracies do not like to report data
 - So we cannot compare them
 - Only wealthy democracies 'select' into our sample



 Imagine a treatment assignment mechanism where people get to *choose* their treatment

Treatment Assignment by Self-Selection

	D	Y ₁	<i>Y</i> ₀	Υ _i	Real Effect
А	1	7	4	7	3
В	1	9	5	9	4
С	0	4	4	4	0
D	0	4	3	3	1

Introduction	Causal Inference	3 Critiques	Observational Data

 Imagine a treatment assignment mechanism where people get to *choose* their treatment

Treatment Assignment by Self-Selection

	D	Y ₁	Y ₀	Υi	Real Effect
А	1	7	4	7	3
В	1	9	5	9	4
С	0	4	4	4	0
D	0	4	3	3	1
$E(Y_1) =$		8			
$E(Y_0) =$			3.5		

Introduction	Causal Inference	3 Critiques	Observational Data

 Imagine a treatment assignment mechanism where people get to *choose* their treatment

Treatment Assignment by Self-Selection

	D	Y ₁	<i>Y</i> ₀	Υ _i	Real Effect
А	1	7	4	7	3
В	1	9	5	9	4
С	0	4	4	4	0
D	0	4	3	3	1
$E(Y_1) =$		8			
$E(Y_0) =$			3.5		

- ► ATE = 8 3.5 = 4.5
- ► This is self-selection bias those with a big jump in potential outcomes (Y1 Y0) choose treatment

We can identify the source of these biases in potential outcomes:

We can identify the source of these biases in potential outcomes:

$$\underbrace{E(Y_i|D=1) - E(Y_i|D=0)}_{(4)}$$

Observed Effect

Introduction	Causal Inference	3 Critiques	Observational Data
Problems with	Observational D	ata	
 We can ide outcomes: 	ntify the source	of these biases	in potential
$\underbrace{E(Y_i D=1)}_{\text{Observe}}$	$E(Y_i D=0) = E($	\rightarrow	
-		$\frac{1}{2} \left[E(Y_{0i} D = 1) \right]$	$L) - E(Y_{0i} D=0)]$
Imbal	ance on Y_1	Imbal	ance on Y_0

(5)

NB: For equal-sized treatment and control groups

Introduction	Causal Inference	3 Critiques	Observational Data
Problems with O	bservational Data		

Disaggregating the Self-Selection Bias:

$$\frac{(7+9-4-3)}{2} = \frac{(7+9+4+4-4-5-4-3)}{4} + \frac{1}{2} \left[\frac{(7+9)}{2} - \frac{(4+4)}{2} \right] + \frac{1}{2} \left[\frac{(4+5)}{2} - \frac{(4+3)}{2} \right] + \frac{1}{2} \left[\frac{(4+5)}{2} - \frac{(4+5)}{2} \right] + \frac{1}{2} \left[\frac{(4+5)}{2} - \frac{(4+3)}{2} \right] + \frac{1}{2} \left[\frac{(4+5)}{2} - \frac{(4+5)}{2} \right] + \frac{1}{2} \left[\frac{(4+5)}{2} - \frac$$

Introduction	Causal Inference	3 Critiques	Observational Data
Problems with C	Observational Data		

 Depending on the treatment assignment mechanism we get a range of Average Treatment Effects:

Comparing Average Treatment Effects

Treated Units	ATE
Real Effect for all units	2
Units A & D	1
Women (Omitted Variable Bias)	-0.5
Biggest gains (Self-selection)	4.5

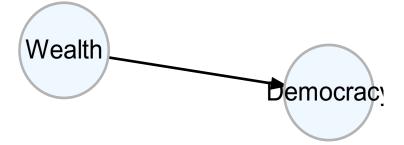
Wealthier countries are more likely to be democracies

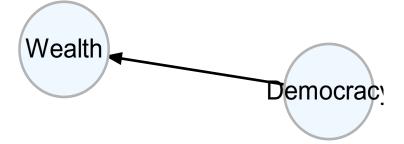
- Wealthier countries are more likely to be democracies
 - But does wealth create democracy?

- Wealthier countries are more likely to be democracies
 - But does wealth create democracy?
 - Or democracy create wealth?

- Wealthier countries are more likely to be democracies
 - But does wealth create democracy?
 - Or democracy create wealth?
- ► We cannot tell from the correlation alone

- Wealthier countries are more likely to be democracies
 - But does wealth create democracy?
 - Or democracy create wealth?
- ► We cannot tell from the correlation alone
- Both may be true





► Assume treatment has *no* effect

Treatment Assignment by Covariate

	D	<i>Y</i> ₁	<i>Y</i> ₀	Υ _i	Real Effect
А	0	7	7	7	0
В	0	9	9	9	0
С	1	4	4	4	0
D	1	4	4	4	0

► Assume treatment has *no* effect

Treatment Assignment by Covariate

	D	Y ₁	Y ₀	Υi	Real Effect
А	0	7	7	7	0
В	0	9	9	9	0
С	1	4	4	4	0
D	1	4	4	4	0
$E(Y_1) =$		4			
$E(Y_0) =$			4		

► Assume treatment has *no* effect

Treatment Assignment by Covariate

	D	Y ₁	Y ₀	Υi	Real Effect
А	0	7	7	7	0
В	0	9	9	9	0
С	1	4	4	4	0
D	1	4	4	4	0
$E(Y_1) =$		4			
$E(Y_0) =$			4		

• ATE = 4 - 4 = 0. There is no effect.

 The (negative) correlation between D and Y is because Y causes D

In				

Causal Inference

Types of Research Design:

	Researcher con- trols the treat- ment assignment	Treatment assign- ment mechanism likely to create comparable po- tential outcomes ('Conditional Independence')
Controlled Experi- ments	Yes	Yes
Natural Experi- ments	No	Yes
Observable Stud- ies	No	No

Problems with Observational Data

Observational Studies

Problems with Observational Data

Observational Studies

- Household surveys
- Simple regression on secondary data
- Interviews of a random sample