
Chapter 4

Matching Estimators of
Causal Effects

Written with David Harding1

The rise of the counterfactual model to prominence has increased the popularity
of data analysis routines that are most clearly useful for estimating the effects
of causes. The matching estimators that we will review and explain in this
chapter are perhaps the best example of a classic technique that has reemerged
in the past two decades as a promising procedure for estimating causal effects.2

Matching represents an intuitive method for addressing causal questions, pri-
marily because it pushes the analyst to confront the process of causal exposure
as well as the limitations of available data. Accordingly, among social scientists
who adopt a counterfactual perspective, matching methods are fast becoming
an indispensable technique for prosecuting causal questions, even though they
usually prove to be the beginning rather than the end of causal analysis on any
particular topic.

We begin with a brief discussion of the past use of matching methods. Then,
we present the fundamental concepts underlying matching, including stratifica-
tion of the data, weighting to achieve balance, and propensity scores. Thereafter,
we discuss how matching is usually undertaken in practice, including an overview
of various matching algorithms. Finally, we discuss how the assumptions behind
matching estimators often break down in practice, and we introduce some of the
remedies that have been proposed to address the resulting problems.

1This chapter is based on Morgan and Harding (2006).
2Matching techniques can be motivated as estimators without invoking causality. Just as

with regression modeling, which we discuss in detail in the next chapter, matching can be
used to adjust the data in search of a meaningful descriptive fit to the data in hand. Given
the nature of this book, we will focus on matching as an estimator of causal effects. We will,
however, discuss the descriptive motivation for regression estimators in the next chapter.
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88 Chapter 4. Matching Estimators of Causal Effects

In the course of presentation, we will offer four hypothetical examples that
demonstrate some of the essential claims of the matching literature, progressing
from idealized examples of stratification and weighting to the implementation
of alternative matching algorithms on simulated data for which the treatment
effects of interest are known by construction. As we offer these examples, we
add real-world complexity in order to demonstrate how such complexity can
overwhelm the power of the techniques.

4.1 Origins of and Motivations for Matching

Matching techniques have origins in experimental work from the first half of
the twentieth century. Relatively sophisticated discussions of matching as a re-
search design can be found in early methodological texts in the social sciences
(e.g., Greenwood 1945) and also in attempts to adjudicate between compet-
ing explanatory accounts in applied demography (Freedman and Hawley 1949).
This early work continued in sociology (e.g., Althauser and Rubin 1970, 1971;
Yinger, Ikeda, and Laycock 1967) right up to the key foundational literature
in statistics (Rubin 1973a, 1973b, 1976, 1977, 1979, 1980a) that provided the
conceptual foundation for the new wave of matching techniques that we will
present in this chapter.

In the early 1980s, matching techniques, as we conceive of them now, were
advanced in a set of papers by Rosenbaum and Rubin (1983a, 1984, 1985a,
1985b) that offered solutions to a variety of practical problems that had limited
matching techniques to very simple applications in the past. Variants of these
new techniques found some use immediately in sociology (Berk and Newton
1985; Berk, Newton, and Berk 1986; Hoffer et al. 1985), continuing with work
by Smith (1997). In the late 1990s, economists and political scientists joined in
the development of matching techniques (e.g., Heckman et al. 1999; Heckman,
Ichimura, Smith, and Todd 1998; Heckman, Ichimura, and Todd 1997, 1998 in
economics and Ho, Imai, King, and Stuart 2005 and Diamond and Sekhon 2005
in political science). Given the growth of this literature, and the applications
that are accumulating, we expect that matching will complement other types of
modeling in the social sciences with greater frequency in the future.

In the methodological literature, matching is usually introduced in one of
two ways: (1) as a method to form quasi-experimental contrasts by sampling
comparable treatment and control cases from among two larger pools of such
cases or (2) as a nonparametric method of adjustment for treatment assign-
ment patterns when it is feared that ostensibly simple parametric regression
estimators cannot be trusted.

For the first motivation, the archetypical example is an observational biomed-
ical study in which a researcher is called on to assess what can be learned about
a particular treatment. The investigator is given access to two sets of data,
one for individuals who have been treated and one for individuals who have
not. Each dataset includes a measurement of current symptoms, Y , and a set
of characteristics of individuals, as a vector of variables X, that are drawn from
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demographic profiles and health histories. Typically, the treatment cases are
not drawn from a population by means of any known sampling scheme. In-
stead, they emerge as a result of the distribution of initial symptoms, patterns
of access to the health clinic, and then decisions to take the treatment. The
control cases, however, may represent a subsample of health histories from some
known dataset. Often, the treatment is scarce, and the control dataset is much
larger than the treatment dataset.

In this scenario, matching is a method of strategic subsampling from among
treated and control cases. The investigator selects a nontreated control case
for each treated case based on the characteristics observed as xi. All treated
cases and matched control cases are retained, and all nonmatched control cases
are discarded. Differences in the observed yi are then calculated for treated
and matched cases, with the average difference serving as the treatment effect
estimate for the group of individuals given the treatment.3

The second motivation has no archetypical substantive example, as it is
similar in form to any attempt to use regression to estimate causal effects with
survey data. Suppose, for a general example, that an investigator is interested in
the causal effect of an observed dummy variable, D, on an observed outcome, Y .
For this example, it is known that a simple bivariate regression, Y = α+δD+ε,
will yield an estimated coefficient δ̂ that is a biased and inconsistent estimate
of the causal effect of interest because the causal variable D is associated with
variables included in the error term, ε. For a particular example, if D is the
receipt of a college degree and Y is a measure of economic success, then the
estimate of interest is the causal effect of obtaining a college degree on subse-
quent economic success. However, family background variables are present in ε
that are correlated with D, and this relationship produces omitted-variable bias
for a college-degree coefficient estimated from a bivariate ordinary least squares
(OLS) regression of Y on D.

In comparison with the biomedical example just presented, this motivation
differs in two ways: (1) In most applications of this type, the data represent a
random sample from a well-defined population and (2) the common practice in
the applied literature is to use regression to estimate effects. For the education
example, a set of family background variables in X is assumed to predict both D
and Y . The standard regression solution is to estimate an expanded regression
equation: Y = α + δD + Xβ + ε∗. With this strategy (which we will discuss
in detail in the next chapter), the goal is to estimate simultaneously the causal
effects of X and D on the outcome, Y .

In contrast, a matching estimator nonparametrically balances the variables
in X across D solely in the service of obtaining the best possible estimate of
the causal effect of D on Y . The most popular technique is to estimate the
probability of D for each individual i as a function of X and then to select

3A virtue of matching, as developed in this tradition, is cost effectiveness for prospective
studies. If the goal of a study is to measure the evolution of a causal effect over time by mea-
suring symptoms at several points in the future, then discarding nontreated cases unlike any
treated cases can cut expenses without substantially affecting the quality of causal inferences
that a study can yield.
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for further analysis only matched sets of treatment and control cases that con-
tain individuals with equivalent values for these predicted probabilities. This
procedure results in a subsampling of cases, comparable with the matching pro-
cedure described for the biomedical example, but for a single dimension that is a
function of the variables in X. In essence, the matching procedure throws away
information from the joint distribution of X and Y that is unrelated to variation
in the treatment variable D until the remaining distribution of X is equivalent
for both the treatment and control cases. When this equivalence is achieved, the
data are said to be balanced with respect to X.4 Under specific assumptions,
the remaining differences in the observed outcome between the treatment and
matched control cases can then be regarded as attributable solely to the effect
of the treatment.5

For the remainder of this chapter, we will adopt this second scenario because
research designs in which data are drawn from random-sample surveys are much
more common in the social sciences.6 Thus, we will assume that the data in
hand were generated by a relatively large random-sample survey (in some cases
an infinite sample to entirely remove sampling error from consideration), in
which the proportion and pattern of individuals who are exposed to the cause
are fixed in the population by whatever process generates causal exposure.

4.2 Matching as Conditioning via Stratification

In this section we introduce matching estimators in idealized research conditions,
drawing connections with the broad perspective on conditioning introduced in
Chapter 3. Thereafter, we proceed to a discussion of matching in more realistic
scenarios, which is where we explain the developments of matching techniques
that have been achieved in the past three decades.

4.2.1 Estimating Causal Effects by Stratification

Suppose that those who take the treatment and those who do not are very
much unlike each other, and yet the ways in which they differ are captured
exhaustively by a set of observed treatment assignment/selection variables S.
For the language we will adopt in this chapter, knowledge and observation of S
allow for a “perfect stratification”of the data. By “perfect,”we mean precisely
that individuals within groups defined by values on the variables in S are entirely
indistinguishable from each other in all ways except for (1) observed treatment

4As we will discuss later, in many applications balance can be hard to achieve without
some subsampling from among the treatment cases. In this case, the causal parameter that
is identified is narrower even than the average treatment effect for the treated (and is usually
a type of marginal treatment effect pinned to the common support of treatment and control
cases).

5A third motivation, which is due to Ho, Imai, King, and Stuart (2005), has now emerged.
Matching can be used as a data preprocessor that prepares a dataset for further causal mod-
eling with a parametric model. We discuss this perspective along with others that seek to
combine matching and regression approaches later, especially in Chapter 5.

6See our earlier discussion in Section 1.4 of this random-sample setup.



4.2. Matching as Conditioning via Stratification 91

status and (2) differences in the potential outcomes that are independent of
treatment status. Under such a perfect stratification of the data, even though
we would not be able to assert Assumptions 1 and 2 in Equations (2.13) and
(2.14), we would be able to assert conditional variants of those assumptions:

Assumption 1-S: E[Y 1|D = 1, S] = E[Y 1|D = 0, S], (4.1)
Assumption 2-S: E[Y 0|D = 1, S] = E[Y 0|D = 0, S]. (4.2)

These assumptions would suffice to enable consistent estimation of the average
treatment effect, as the treatment can be considered randomly assigned within
groups defined by values on the variables in S.

When in this situation, researchers often assert that the naive estimator in
Equation (2.7) is subject to bias (either generic omitted-variable bias or individ-
ually generated selection bias). But, because a perfect stratification of the data
can be formulated, treatment assignment is ignorable [see the earlier discussion
of Equation (3.2)] or treatment selection is on the observable variables S only
[see the earlier discussion of Equation (3.6)]. This is a bit imprecise, however,
because Assumptions 1-S and 2-S are implied by ignorability and selection on
the observables (assuming S is observed). For ignorability and selection on the
observables to hold more generally, the full distributions of Y 1 and Y 0 (and
any functions of them) must be independent of D conditional on S [see the
discussion of Equation (3.3)]. Thus Assumptions 1-S and 2-S are weaker than
assumptions of ignorability and selection on the observables, but they are suffi-
cient to identify the three average causal effects of primary interest.

Recall the DAG in panel (b) of Figure 3.8, where S lies along the only
back-door path from D to Y . As discussed there, conditioning on S allows for
consistent estimation of the unconditional average treatment effect, as well as
the average treatment effects for the treated and for the untreated. Although
we gave a conceptual discussion in Chapter 3 of why conditioning works in this
scenario, we will now explain more specifically with a demonstration. First note
why everything works out so cleanly when a set of perfect stratifying variables
is available. If Assumption 1-S is valid, then

E[δ|D = 0, S] = E[Y 1 − Y 0|D = 0, S] (4.3)
= E[Y 1|D = 0, S] − E[Y 0|D = 0, S]
= E[Y 1|D = 1, S] − E[Y 0|D = 0, S].

If Assumption 2-S is valid, then

E[δ|D = 1, S] = E[Y 1 − Y 0|D = 1, S] (4.4)
= E[Y 1|D = 1, S] − E[Y 0|D = 1, S]
= E[Y 1|D = 1, S] − E[Y 0|D = 0, S].

The last line of Equation (4.3) is identical to the last line of Equation (4.4), and
neither line includes counterfactual conditional expectations. Accordingly, one
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can consistently estimate the difference in the last line of Equation (4.3) and
the last line of Equation (4.4) for each value of S. To then form consistent esti-
mates of alternative average treatment effects, one simply averages the stratified
estimates over the distribution of S, as we show in the following demonstration.

Matching Demonstration 1

Consider a completely hypothetical example in which Assumptions 1 and 2 in
Equations (2.13) and (2.14) cannot be asserted because positive self-selection
ensures that those who are observed in the treatment group are more likely to
benefit from the treatment than those who are not. But assume that a three-
category perfect stratifying variable S is available that allows one to assert
Assumptions 1-S and 2-S in Equations (4.1) and (4.2). Moreover, suppose for
simplicity of exposition that our sample is infinite so that sampling error is
zero. In this case, we can assume that the sample moments in our data equal
the population moments (i.e., EN [yi|di = 1] = E[Y |D = 1] and so on).

If it is helpful, think of Y as a measure of an individual’s economic success at
age 40, D as an indicator of receipt of a college degree, and S as a mixed family-
background and preparedness-for-college variable that completely accounts for
the pattern of self-selection into college that is relevant for lifetime economic
success. Note, however, that no one has ever discovered such a variable as S for
this particular causal effect.

Suppose now that, for our infinite sample, the sample mean of the outcome
for those observed in the treatment group is 10.2 whereas the sample mean of
the outcome for those observed in the control group is 4.4. In other words, we
have data that yield EN [yi|di = 1] = 10.2 and EN [yi|di = 0] = 4.4, and for
which the naive estimator would yield a value of 5.8 (i.e., 10.2 − 4.4).

Consider, now, an underlying set of potential outcome variables and treat-
ment assignment patterns that could give rise to a naive estimate of 5.8. Table
4.1 presents the joint probability distribution of the treatment variable D and
the stratifying variable S in its first panel as well as expectations, conditional
on S, of the potential outcomes under the treatment and control states. The
joint distribution in the first panel shows that individuals with S equal to 1
are more likely to be observed in the control group, individuals with S equal
to 2 are equally likely to be observed in the control group and the treatment
group, and individuals with S equal to 3 are more likely to be observed in the
treatment group.

As shown in the second panel of Table 4.1, the average potential outcomes
conditional on S and D imply that the average causal effect is 2 for those with
S equal to 1 or S equal to 2 but 4 for those with S equal to 3 (see the last
column). Moreover, as shown in the last row of the table, where the potential
outcomes are averaged over the within-D distribution of S, E[Y |D = 0] = 4.4
and E[Y |D = 1] = 10.2, matching the initial setup of the example based on a
naive estimate of 5.8 from an infinite sample.

Table 4.2 shows what can be calculated from the data, assuming that S
offers a perfect stratification of the data. The first panel presents the sample
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Table 4.1: The Joint Probability Distribution and Conditional Population Ex-
pectations for Matching Demonstration 1

Joint probability distribution of S and D
D = 0 D = 1

S = 1 Pr [S = 1,D = 0] = .36 Pr [S = 1,D = 1] = .08 Pr [S = 1] = .44
S = 2 Pr [S = 2,D = 0] = .12 Pr [S = 2,D = 1] = .12 Pr [S = 2] = .24
S = 3 Pr [S = 3,D = 0] = .12 Pr [S = 3,D = 1] = .2 Pr [S = 3] = .32

Pr [D = 0] = .6 Pr [D = 1] = .4

Potential outcomes

Under the control state Under the treatment state

S = 1 E[Y 0|S = 1] = 2 E[Y 1|S = 1] = 4 E[Y 1−Y 0|S = 1] = 2
S = 2 E[Y 0|S = 2] = 6 E[Y 1|S = 2] = 8 E[Y 1−Y 0|S = 2] = 2
S = 3 E[Y 0|S = 3] = 10 E[Y 1|S = 3] = 14 E[Y 1−Y 0|S = 3] = 4

E[Y 0|D = 0] E[Y 1|D = 1]
= .36

.6 (2)+ .12
.6 (6) = .08

.4 (4)+ .12
.4 (8)

+ .12
.6 (10) + .2

.4 (14)
= 4.4 = 10.2

expectations of the observed outcome variable conditional on D and S. The
second panel of Table 4.2 presents corresponding sample estimates of the con-
ditional probabilities of S given D.

The existence of a perfect stratification (and the supposed availability of data
from an infinite sample) ensures that the estimated conditional expectations in
the first panel of Table 4.2 equal the population-level conditional expectations
of the second panel of Table 4.1. When stratifying by S, the average observed
outcome for those in the control/treatment group with a particular value of S
is equal to the average potential outcome under the control/treatment state for
those with a particular value of S. Conversely, if S were not a perfect stratifying
variable, then the sample means in the first panel of Table 4.2 would not equal
the expectations of the potential outcomes in the second panel of Table 4.1.
The sample means would be based on heterogeneous groups of individuals who
differ systematically within the strata defined by S in ways that are correlated
with individual-level treatment effects.

If S offers a perfect stratification of the data, then one can estimate from the
numbers in the cells of the two panels of Table 4.2 both the average treatment
effect among the treated as

(4 − 2)(.2) + (8 − 6)(.3) + (14 − 10)(.5) = 3
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Table 4.2: Estimated Conditional Expectations and Probabilities for Matching
Demonstration 1

Estimated mean observed outcome conditional on siand di

Control group Treatment group

si= 1 EN [yi|si= 1, di= 0] = 2 EN [yi|si= 1, di= 1] = 4
si= 2 EN [yi|si= 2, di= 0] = 6 EN [yi|si= 2, di= 1] = 8
si= 3 EN [yi|si= 3, di= 0] = 10 EN [yi|si= 3, di= 1] = 14

Estimated probability of S conditional on D

si= 1 PrN [si= 1|di= 0] = .6 PrN [si= 1|di= 1] = .2
si= 2 PrN [si= 2|di= 0] = .2 PrN [si= 2|di= 1] = .3
si= 3 PrN [si= 3|di= 0] = .2 PrN [si= 3|di= 1] = .5

and the average treatment effect among the untreated as

(4 − 2)(.6) + (8 − 6)(.2) + (14 − 10)(.2) = 2.4.

Finally, if one calculates the appropriate marginal distributions of S and D
(using sample analogs for the marginal distribution from the first panel of Table
4.1), one can perfectly estimate the unconditional average treatment effect either
as

(4 − 2)(.44) + (8 − 6)(.24) + (14 − 10)(.32) = 2.64

or as
3(.6) + 2.4(.4) = 2.64.

Thus, for this hypothetical example, the naive estimator would be (asymptoti-
cally) upwardly biased for the average treatment effect among the treated, the
average treatment effect among the untreated, and the unconditional average
treatment effect. But, by appropriately weighting stratified estimates of the
treatment effect, one can obtain unbiased and consistent estimates of these av-
erage treatment effects.

In general, if a stratifying variable S completely accounts for all systematic
differences between those who take the treatment and those who do not, then
conditional-on-S estimators yield consistent estimates of the average treatment
effect conditional on a particular value s of S:

{EN [yi|di =1, si =s] − EN [yi|di = 0, si =s} p−→ E[Y 1 − Y 0|S =s]=E[δ|S =s].
(4.5)

Weighted sums of these stratified estimates can then be taken, such as for the
unconditional average treatment effect:∑

s

{EN [yi|di = 1, si = s] − EN [yi|di = 0, si = s]}Pr N [si = s]
p−→ E[δ]. (4.6)
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Substituting into this last expression the distributions of S conditional on the
two possible values of D (i.e., Pr N [si = s|di = 1] or Pr N [si = s|di = 0]),
one can obtain consistent estimates of the average treatment effect among the
treated and the average treatment effect among the untreated.

The key to using stratification to solve the causal inference problem for all
three causal effects of primary interest is twofold: finding the stratifying vari-
able and then obtaining the marginal probability distribution Pr[S] as well as
the conditional probability distribution Pr[S|D]. Once these steps are accom-
plished, obtaining consistent estimates of the within-strata treatment effects
is straightforward. Then, consistent estimates of other average treatment ef-
fects can be formed by taking appropriate weighted averages of the stratified
estimates.

This simple example shows all of the basic principles of matching estima-
tors. Treatment and control subjects are matched together in the sense that
they are grouped together into strata. Then, an average difference between the
outcomes of treatment and control subjects is estimated, based on a weighting
of the strata (and thus the individuals within them) by a common distribution.
The imposition of the same set of stratum-level weights for those in both the
treatment and control groups ensures that the data are balanced with respect
to the distribution of S across treatment and control cases.

4.2.2 Overlap Conditions for Stratifying Variables

Suppose now that a perfect stratification of the data is available, but that there
is a stratum in which no member of the population ever receives the treatment.
Here, the average treatment effect is undefined. A hidden stipulation is built
into Assumptions 1-S and 2-S if one wishes to be able to estimate the average
treatment effect for the entire population. The “perfect” stratifying variables
must not be so perfect that they sort deterministically individuals into either
the treatment or the control. If so, the range of the stratifying variables will
differ fundamentally for treatment and control cases, necessitating a redefinition
of the causal effect of interest.7

Matching Demonstration 2

For the example depicted in Tables 4.3 and 4.4, S again offers a perfect stratifi-
cation of the data. The setup of these two tables is exactly equivalent to that of
the prior Tables 4.1 and 4.2 for Matching Demonstration 1. We again assume
that the data are generated by a random sample of a well-defined population,
and for simplicity of exposition that the sample is infinite. The major difference
is evident in the joint distribution of S and D presented in the first panel of
Table 4.3. As shown in the first cell of the second column, no individual with
S equal to 1 would ever be observed in the treatment group of a dataset of

7In this section, we focus on the lack of overlap that may exist in a population (or super-
population). For now, we ignore the lack of overlap that can emerge in observed data solely
because of the finite size of a dataset. We turn to these issues in the next section, where we
discuss solutions to sparseness.
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Table 4.3: The Joint Probability Distribution and Conditional Population
Expectations for Matching Demonstration 2

Joint probability distribution of S and D
D = 0 D = 1

S = 1 Pr [S = 1,D = 0] = .4 Pr [S = 1,D = 1] = 0 Pr [S = 1] = .4
S = 2 Pr [S = 2,D = 0] = .1 Pr [S = 2,D = 1] = .13 Pr [S = 2] = .23
S = 3 Pr [S = 3,D = 0] = .1 Pr [S = 3,D = 1] = .27 Pr [S = 3] = .37

Pr [D = 0] = .6 Pr [D = 1] = .4

Potential outcomes

Under the control state Under the treatment state

S = 1 E[Y 0|S = 1] = 2
S = 2 E[Y 0|S = 2] = 6 E[Y 1|S = 2] = 8 E[Y 1−Y 0|S = 2] = 2
S = 3 E[Y 0|S = 3] = 10 E[Y 1|S = 3] = 14 E[Y 1−Y 0|S = 3] = 4

E[Y 0|D = 0] E[Y 1|D = 1]
= .4

.6 (2)+ .1
.6 (6)+ .1

.6 (10) = .13
.4 (8)+ .27

.4 (14)
= 4 = 12.05

any size because the joint probability of S equal to 1 and D equal to 1 is zero.
Corresponding to this structural zero in the joint distribution of S and D, the
second panel of Table 4.3 shows that there is no corresponding conditional ex-
pectation of the potential outcome under the treatment state for those with S
equal to 1. And, thus, as shown in the last column of the second panel of Table
4.3, no causal effect exists for individuals with S equal to 1.8

Adopting the college degree causal effect framing of the last hypothetical
example in Matching Demonstration 1, this hypothetical example asserts that
there is a subpopulation of individuals from such disadvantaged backgrounds
that no individuals with S = 1 have ever graduated from college. For this group
of individuals, we assume in this example that there is simply no justification
for using the wages of those from more advantaged social backgrounds to ex-
trapolate to the what-if wages of the most disadvantaged individuals if they
had somehow overcome the obstacles that prevent them from obtaining college
degrees.

Table 4.4 shows what can be estimated for this example. If S offers a perfect
stratification of the data, one could consistently estimate the treatment effect

8The naive estimate can be calculated for this example, and it would equal 8.05 for a very
large sample because [8(.325) + 14(.675)]− [2(.667) + 6(.167) + 10(.167)] is equal to 8.05. See
the last row of the table for the population analogs to the two pieces of the naive estimator.
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Table 4.4: Estimated Conditional Expectations and Probabilities for Matching
Demonstration 2

Estimated mean observed outcome conditional on siand di

Control group Treatment group

si= 1 EN [yi|si= 1, di= 0] = 2
si= 2 EN [yi|si= 2, di= 0] = 6 EN [yi|si= 2, di= 1] = 8
si= 3 EN [yi|si= 3, di= 0] = 10 EN [yi|si= 3, di= 1] = 14

Estimated probability of S conditional on D

si= 1 PrN [si= 1|di= 0] = .667 PrN [si= 1|di= 1] = 0
si= 2 PrN [si= 2|di= 0] = .167 PrN [si= 2|di= 1] = .325
si= 3 PrN [si= 3|di= 0] = .167 PrN [si= 3|di= 1] = .675

for the treated as

(8 − 6)(.325) + (14 − 10)(.675) = 3.35.

However, there is no way to consistently estimate the treatment effect for the
untreated, and hence no way to consistently estimate the unconditional average
treatment effect.

Are examples such as this one ever found in practice? For an example that
is more realistic than the causal effect of a college degree on economic success,
consider the evaluation of a generic program in which there is an eligibility rule.
The benefits of enrolling in the program for those who are ineligible cannot
be estimated from the data, even though, if some of those individuals were
enrolled in the program, they would likely be affected by the treatment in some
way.9

Perhaps the most important point of this last example, however, is that
the naive estimator is entirely misguided for this hypothetical application. The
average treatment effect is undefined for the population of interest. More gen-
erally, not all causal questions have answers worth seeking even in best-case
data availability scenarios, and sometimes this will be clear from the data and
contextual knowledge of the application. However, at other times, the data may
appear to suggest that no causal inference is possible for some group of individ-
uals even though the problem is simply a small sample size. There is a clever
solution to sparseness of data for these types of situations, which we discuss in
the next section.

9Developing such estimates would require going well beyond the data, introducing assump-
tions that allow for extrapolation off of the common support of S.
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4.3 Matching as Weighting

As shown in the last section, if all of the variables in S have been observed such
that a perfect stratification of the data would be possible with an infinitely large
random sample from the population, then a consistent estimator is available in
theory for each of the average causal effects of interest defined in Equations
(2.3), (2.5), and (2.6). However, in many (if not most) datasets of finite size, it
may not be possible to use the simple estimation methods of the last section to
generate consistent estimates. Treatment and control cases may be missing at
random within some of the strata defined by S, such that some strata contain
only treatment or only control cases. In this situation, some within-stratum
causal effect estimates cannot be calculated. We now introduce a set of weighting
estimators that rely on estimated propensity scores to solve the sort of data
sparseness problems that afflict samples of finite size.

4.3.1 The Utility of Known Propensity Scores

An estimated propensity score is the estimated probability of taking the treat-
ment as a function of variables that predict treatment assignment. Before the
attraction of estimated propensity scores is explained, there is value in under-
standing why known propensity scores would be useful in an idealized context
such as a perfect stratification of the data.

Within a perfect stratification, the true propensity score is nothing other
than the within-stratum probability of receiving the treatment, or Pr[D = 1|S].
For the hypothetical example in Matching Demonstration 1 (see Subsection
4.2.1), the propensity scores are:

Pr[D = 1|S = 1] =
.08
.44

= .182,

Pr[D = 1|S = 2] =
.12
.24

= .5,

Pr[D = 1|S = 3] =
.2
.32

= .625.

Why is the propensity score useful? As shown earlier for Matching Demonstra-
tion 1, if a perfect stratification of the data is available, then the final ingredient
for calculating average treatment effect estimates for the treated and for the un-
treated is the conditional distribution Pr[S|D]. One can recover Pr[S|D] from
the propensity scores by applying Bayes’ rule using the marginal distributions
of D and S. For example, for the first stratum,

Pr[S = 1|D = 1] =
Pr[D = 1|S = 1]Pr[S = 1]

Pr[D = 1]
=

(.182)(.44)
(.4)

= .2.

Thus, the true propensity scores encode all of the necessary information about
the joint dependence of S and D that is needed to estimate and then combine
conditional-on-S treatment effect estimates into estimates of the treatment effect
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for the treated and the treatment effect for the untreated. Known propensity
scores are thus useful for unpacking the inherent heterogeneity of causal ef-
fects and then averaging over such heterogeneity to calculate average treatment
effects.

Of course, known propensity scores are almost never available to researchers
working with observational rather than experimental data. Thus, the liter-
ature on matching more often recognizes the utility of propensity scores for
addressing an entirely different concern: solving comparison problems created
by the sparseness of data in any finite sample. These methods rely on estimated
propensity scores, as we discuss next.

4.3.2 Weighting with Propensity Scores to Address
Sparseness

Suppose again that a perfect stratification of the data exists and is known. In
particular, Assumptions 1-S and 2-S in Equations (4.1) and (4.2) are valid, and
the true propensity score is greater than 0 and less than 1 for every stratum
defined by S. But, suppose now that (1) there are multiple variables in S and
(2) some of these variables take on many values. In this scenario, there may
be many strata in the available data in which no treatment or control cases are
observed, even though the true propensity score is between 0 and 1 for every
stratum in the population.

Can average treatment effects be consistently estimated in this scenario?
Rosenbaum and Rubin (1983a) answer this question affirmatively. The essential
points of their argument are the following (see the original article for a formal
proof): First, the sparseness that results from the finiteness of a sample is
random, conditional on the joint distribution of S and D. As a result, within
each stratum for a perfect stratification of the data, the probability of having a
zero cell in the treatment or the control state is solely a function of the propensity
score. Because such sparseness is conditionally random, strata with identical
propensity scores (i.e., different combinations of values for the variables in S but
the same within-stratum probability of treatment) can be combined into a more
coarse stratification. Over repeated samples from the same population, zero
cells would emerge with equal frequency across all strata within these coarse
propensity-score-defined strata.

Because sparseness emerges in this predictable fashion, stratifying on the
propensity score itself (rather than more finely on all values of the variables in
S) solves the sparseness problem because the propensity score can be treated
as a single stratifying variable. In fact, as we show in the next hypothetical
example, one can obtain consistent estimates of treatment effects by weighting
the individual-level data by an appropriately chosen function of the estimated
propensity score, without ever having to compute any stratum-specific causal
effect estimates.

But how does one obtain the propensity scores for data from a random
sample of the population of interest? Rosenbaum and Rubin (1983a) argue
that, if one has observed the variables in S, then the propensity score can be
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estimated using standard methods, such as logit modeling. That is, one can
estimate the propensity score, assuming a logistic distribution,

Pr[D = 1|S] =
exp(Sφ)

1 + exp(Sφ)
, (4.7)

and invoke maximum likelihood to estimate a vector of coefficients φ̂. One
can then stratify on the index of the estimated propensity score, e(si) = siφ̂,
or appropriately weight the data as we show later, and all of the results es-
tablished for known propensity scores then obtain.10 Consider the following
hypothetical example, in which weighting is performed only with respect to the
estimated propensity score, resulting in unbiased and consistent estimates of
average treatment effects even though sparseness problems are severe.

Matching Demonstration 3

Consider the following Monte Carlo simulation, which is an expanded version of
the hypothetical example in Matching Demonstration 1 (see Subsection 4.2.1)
in two respects. First, for this example, there are two stratifying variables, A
and B, each of which has 100 separate values. As for Matching Demonstra-
tion 1, these two variables represent a perfect stratification of the data and,
as such, represent all of the variables in the set of perfect stratifying variables,
defined earlier as S. Second, to demonstrate the properties of alternative esti-
mators, this example utilizes 50,000 samples of data, each of which is a random
realization of the same set of definitions for the constructed variables and the
stipulated joint distributions between them.

Generation of the 50,000 Datasets. For the simulation, we gave the variables
A and B values of .01, .02, .03, and upward to 1. We then cross-classified the
two variables to form a 100 × 100 grid and stipulated a propensity score, as
displayed in Figure 4.1, that is a positive, nonlinear function of both A and
B.11 We then populated the resulting 20,000 constructed cells (100 × 100 for
the A × B grid multiplied by the two values of D) using a Poisson random
number generator with the relevant propensity score as the Poisson parameter
for the 10,000 cells for the treatment group and one minus the propensity score as
the Poisson parameter for the 10,000 cells for the control group. This sampling
scheme generates (on average across simulated datasets) the equivalent of 10,000

10As Rosenbaum (1987) later clarified (see also Rubin and Thomas 1996), the estimated
propensity scores do a better job of balancing the observed variables in S than the true
propensity scores would in any actual application, because the estimated propensity scores
correct for the chance imbalances in S that characterize any finite sample. This insight has
led to a growing literature that seeks to balance variables in S by various computationally
intensive but powerful nonparametric techniques. We discuss this literature later, and for now
we present only parametric models, as they dominate the foundational literature on matching.

11The parameterization of the propensity score is a constrained tensor product spline re-
gression for the index function of a logit. See Ruppert, Wand, and Carroll (2003) for examples
of such parameterizations. Here, Sφ in Equation (4.7) is equal to − 2 + 3(A) − 3(A − .1) +
2(A − .3) − 2(A − .5) + 4(A − .7) − 4(A − .9) + 1(B) − 1(B − .1) + 2(B − .7) − 2(B − .9) +
3(A − .5)(B − .5) − 3(A − .7)(B − .7).
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Figure 4.1: The propensity score specification for Matching Demonstration 3.

sample members, assigned to the treatment instead of the control as a function
of the probabilities plotted in Figure 4.1.

Across the 50,000 simulated datasets, on average 7,728 of the 10,000 possible
combinations of values for both A and B had no individuals assigned to the
treatment, and 4,813 had no individuals assigned to the control. No matter
the actual realized pattern of sparseness for each simulated dataset, all of the
50,000 datasets are afflicted, such that a perfect stratification on all values for
the variables A and B would result in many strata within each dataset for which
only treatment or control cases are present.

To define treatment effects for each dataset, two potential outcomes were
defined as linear functions of individual values for A and B:

y1
i = 102 + 6ai + 4bi + υ1

i , (4.8)
y0

i = 100 + 3ai + 2bi + υ0
i , (4.9)

where both υ1
i and υ0

i are independent random draws from a normal distribution
with expectation 0 and standard deviation of 5. Then, as in Equation (2.2),
individuals from the treatment group were given an observed yi equal to their
simulated y1

i , and individuals from the control group were given an observed yi

equal to their simulated y0
i .
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Table 4.5: Monte Carlo Means and Standard Deviations of Treatment Effects
and Treatment Effect Estimates for Matching Demonstration 3

Average Average

Average treatment treatment

treatment effect for effect for

effect the treated the untreated

True treatment effects 4.525 4.892 4.395

(.071) (.139) (.083)

Propensity-score-based

weighting estimators:

Misspecified propensity 4.456 4.913 4.293

score estimates (.122) (.119) (.128)

Perfectly specified 4.526 4.892 4.396

propensity score estimates (.120) (.127) (.125)

True propensity scores 4.527 4.892 4.396

(.127) (.127) (.132)

With this setup, the simulation makes available 50,000 datasets for which
the individual treatment effects can be calculated exactly, as true values of
y1

i and y0
i are available for all simulated individuals. Because the true av-

erage treatment effect, treatment effect for the treated, and treatment effect
for the untreated are thus known for each simulated dataset, these average
effects can then serve as baselines against which alternative estimators that
use data only on yi , di, ai, and bi can be compared. The first row of Ta-
ble 4.5 presents true Monte Carlo means and standard deviations of the three
average treatments effects, calculated across the 50,000 simulated datasets.
The mean of the average treatment effect across datasets is 4.525, whereas
the means of the average treatment effects for the treated and for the un-
treated are 4.892 and 4.395, respectively. Similar to the hypothetical example
in Matching Demonstration 1, this example represents a form of positive se-
lection, in which those who are most likely to be in the treatment group are
also those most likely to benefit from the treatment.12 Accordingly, the treat-
ment effect for the treated is larger than the treatment effect for the untreated.

Methods for Treatment Effect Estimation. The last three rows of Table 4.5
present results for three propensity-score-based weighting estimators. For the
estimates in the second row, it is (wrongly) assumed that the propensity score
can be estimated consistently with a logit model with linear terms for A and B

12It can also be represented by the DAG in Figure 3.8.
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[i.e., assuming that, for Equation (4.7), a logit with Sφ specified as α + φAA +
φBB will yield consistent estimates of the propensity score surface plotted in
Figure 4.1]. After the logit model was estimated for each of the 50,000 datasets
with the wrong specification, the estimated propensity score for each individual
was then calculated,

p̂i =
exp(α̂ + φ̂Aai + φ̂Bbi)

1 + exp(α̂ + φ̂Aai + φ̂Bbi)
, (4.10)

along with the estimated odds of the propensity of being assigned to the treat-
ment:

r̂i =
p̂i

1 − p̂i
, (4.11)

where p̂i is as constructed in Equation (4.10).
To estimate the treatment effect for the treated, we then implemented a

weighting estimator by calculating the average outcome for the treated and
subtracting from this average outcome a counterfactual average outcome using
weighted data on those from the control group:

δ̂TT,weight ≡
(

1
n1

∑
i:di =1

yi

)
−


∑

i:di =0

r̂iyi∑
i:di =0

r̂i

 , (4.12)

where n1 is the number of individuals in the treatment group and r̂i is the
estimated odds of being in the treatment group instead of in the control group,
as constructed in Equations (4.10) and (4.11). The weighting operation in
the second term gives more weight to control group individuals equivalent to
those in the treatment group (see Rosenbaum 1987, 2002).13 To estimate the
treatment effect for the untreated, we then implemented a weighting estimator
that is the mirror image of the one in Equation (4.12):

δ̂TUT,weight ≡


∑

i:di =1

yi/r̂i∑
i:di =1

n1/r̂i

 −
(

1
n0

∑
i:di =0

yi

)
, (4.13)

where n0 is the number of individuals in the control group. Finally, the corre-
sponding estimator of the unconditional average treatment effect is

δ̂ATE,weight ≡
(

1
n

∑
i

di

) (
δ̂TT,weight

)
+

[(
1 − 1

n

∑
i

di

)] (
δ̂TUT,weight

)
,

(4.14)

13As we will describe later when discussing the connections between matching and regres-
sion, the weighting estimator in Equation (4.12) can be written as a weighted OLS regression
estimator.
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where δ̂TT,weight and δ̂TUT,weight are as defined in Equations (4.12) and (4.13),
respectively. Accordingly, an average treatment effect estimate is simply a
weighted average of the two conditional average treatment effect estimates.

The same basic weighting scheme is implemented for the third row of Table
4.5, but the estimated propensity score utilized to define the estimated odds of
treatment, r̂i, is instead based on results from a flawlessly estimated propensity
score equation (i.e., one that uses the exact same specification that was fed to
the random-number generator that assigned individuals to the treatment; see
prior note on page 100 for the specification). Finally, for the last row of Table
4.5, the same weighting scheme is implemented, but, in this case, the estimated
odds of treatment, r̂i, are replaced with the true odds of treatment, ri, as
calculated with reference to the exact function that generated the propensity
score for Figure 4.1.

Monte Carlo Results. The naive estimator would yield a value of 5.388 for
this example, which is substantially larger than each of the three true average
treatment effects presented in the first row of Table 4.5. The second row of
the table presents three estimates from the weighting estimators in Equations
(4.12)–(4.14), using weights based on the misspecified logit described earlier.
These estimates are closer to the true values presented in the first row (and
much closer than the naive estimate), but the misspecification of the propensity-
score-estimating equation leads to some systematic bias in the estimates. The
third row of the table presents another three weighting estimates, using a perfect
specification of the propensity-score-estimating equation, and now the estimates
are asymptotically shown to be unbiased and consistent for the average treat-
ment effect, the treatment effect for the treated, and the treatment effect for
the untreated. Finally, the last row presents weighting estimates that utilize the
true propensity scores and are also asymptotically unbiased and consistent (but,
as shown by Rosenbaum 1987, more variable than those based on the flawlessly
estimated propensity score; see also Hahn 1998; Hirano, Imbens, and Ridder
2003; Rosenbaum 2002).

The last two rows demonstrate the most important claim of the literature:
If one can obtain consistent estimates of the true propensity scores, one can
solve entirely the problems created by sparseness of data.

This example shows the potential power of propensity-score-based modeling.
If treatment assignment can be modeled perfectly, one can solve the sparseness
problems that afflict finite datasets, at least in so far as offering estimates that
are consistent. On the other hand, this simulation also develops an impor-
tant qualification of this potential power. Without a perfect specification of the
propensity-score-estimating equation, one cannot rest assured that unbiased and
consistent estimates can be obtained. Because propensity scores achieve their
success by “undoing” the treatment assignment patterns, analogous to weight-
ing a stratified sample, systematically incorrect estimated propensity scores can
generate systematically incorrect weighting schemes that yield biased and in-
consistent estimates of treatment effects.14

14There is also the larger issue of whether the challenges of causal inference can be reduced
to mere concerns about conditionally random sparseness, and this will depend entirely on
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Given the description of matching estimators offered in Section 4.1 (i.e.,
algorithms for mechanically identifying matched sets of equivalent treatment
and control cases), in what sense are the individual-level weighting estimators of
the hypothetical example in Matching Demonstration 3 equivalent to matching
estimators?

As emphasized earlier for the hypothetical examples in Matching Demon-
strations 1 and 2, stratification estimators have a straightforward connection to
matching. The strata that are formed represent matched sets, and a weighting
procedure is then used to average stratified treatment effect estimates in order
to obtain the average treatment effects of interest. The propensity score weight-
ing estimators, however, have a less straightforward connection. Here, the data
are, in effect, stratified coarsely by the estimation of the propensity score (i.e.,
because all individuals in the same strata, as defined by the stratifying variables
in S, are given the same estimated propensity scores), and then the weighting is
performed directly across individuals instead of across the strata. This type of
individual-level weighting is made necessary because of sparseness (as some of
the fine strata for which propensity scores are estimated necessarily contain only
treatment or control cases, thereby preventing the direct calculation of strati-
fied treatment effect estimates). Nonetheless, the same principle of balancing
holds: Individuals are weighted within defined strata in order to ensure that the
distribution of S is the same within the treatment and control cases that are
then used to estimate the treatment effects.

In the opposite direction, it is important to recognize that the algorithmic
matching estimators that we summarize in the next section can be considered
weighting estimators. As we show next, these data analysis procedures warrant
causal inference by achieving an as-if stratification of the data that results in a
balanced distribution of covariates across matched treatment and control cases.
Although it is sometimes easier to represent matching estimators as algorithmic
data analysis procedures that mechanically match seemingly equivalent cases to
each other, it is best to understand matching as a method to weight the data
in order to warrant causal inference by balancing S across the treatment and
control cases.

4.4 Matching as a Data Analysis Algorithm

Algorithmic matching estimators differ primarily in (1) the number of matched
cases designated for each to-be-matched target case and (2) how multiple matched
cases are weighted if more than one is utilized for each target case. In this sec-
tion, we describe the four main types of matching estimators.

Heckman, Ichimura, and Todd (1997, 1998) and Smith and Todd (2005)
outline a general framework for representing alternative matching estimators,
and we follow their lead. With our notation, all matching estimators of the

whether one is justified in imposing assumptions on the potential outcomes and treatment
assignment patterns, as outlined earlier.
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treatment effect for the treated would be defined in this framework as

δ̂TT,match =
1
n1

∑
i

[
(yi|di = 1) −

∑
j

ωi,j(yj |dj = 0)

]
, (4.15)

where n1 is the number of treatment cases, i is the index over treatment cases,
j is the index over control cases, and ωi,j represents a set of scaled weights that
measure the distance between each control case and the target treatment case.
In Equation (4.15), the weights are entirely unspecified.

Alternative matching estimators of the treatment effect for the treated can
be represented as different procedures for deriving the weights represented by
ωi,j . As we will describe next, the weights can take on many values, indeed as
many n1 × n0 different values, because alternative weights can be used when
constructing the counterfactual value for each target treatment case. The dif-
ference in the propensity score is the most common distance measure used to
construct weights. Other measures of distance are available, including the esti-
mated odds of the propensity score, the difference in the index of the estimated
logit, and the Mahalanobis metric.15

Before describing the four main types of matching algorithms, we note two
important points. First, for simplicity of presentation, in this section we will
focus on matching estimators of the treatment effect for the treated. Each of
the following matching algorithms could be used in reverse, instead focusing on
matching treatment cases to control cases in order to construct an estimate of
the treatment effect for the untreated. We mention this, in part, because it is
sometimes implied in the applied literature that the matching techniques that
we are about to summarize are useful for estimating only the treatment effect
for the treated. This is false. If (1) all variables in S are known and observed,
such that a perfect stratification of the data could be formed with a suitably
large dataset because both Assumptions 1-S and 2-S in Equations (4.1) and (4.2)
are valid and (2) the ranges of all of the variables in S are the same for both
treatment and control cases, then simple variants of the matching estimators
that we will present in this section can be formed that are consistent for the
treatment effect among the treated, the treatment effect among the untreated,
and the average treatment effect.

Moreover, to consistently estimate the treatment effect for the treated, one
does not need to assume full ignorability of treatment assignment or that both
Assumptions 1-S and 2-S in Equations (4.1) and (4.2) are valid. Instead, only
Assumption 2-S (i.e., E[Y 0|D = 1, S] = E[Y 0|D = 0, S]) must hold.16 In

15The Mahalanobis metric is (Si − Sj )
′Σ−1(Si − Sj ), where Σ is the covariance matrix of

the variables in S (usually calculated for the treatment cases only). There is a long tradi-
tion in this literature of using Mahalanobis matching in combination with propensity score
matching.

16To estimate the treatment effect for the treated, the ranges of the variables in S must
be the same for the treatment and control cases. We do not mention this requirement in the
text, as there is a literature (see Heckman, Ichimura, and Todd 1997, 1998), which we discuss
later, that defines the treatment effect for the treated on the common support and argues that
this is often the central goal of analysis. Thus, even if the support of S is not the same in the
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other words, to estimate the average treatment effect among the treated, it is
sufficient to assume that, conditional on S, the average level of the outcome
under the control for those in the treatment is equal, on average, to the average
level of the outcome under the control for those in the control group.17 This
assumption is still rather stringent, in that it asserts that those in the control
group do not disproportionately gain from exposure to the control state more
than would those in the treatment group if they were instead in the control
group. But it is surely weaker than having to assert Assumptions 1-S and 2-S
together.18

Second, as we show in a later section, the matching algorithms we summarize
next are data analysis procedures that can be used more generally even when
some of the variables in S are unobserved. The matching estimators may still
be useful, as argued by Rosenbaum (2002), as a set of techniques that generates
a provisional set of causal effect estimates that can then be subjected to further
analysis.

4.4.1 Basic Variants of Matching Algorithms

Exact Matching

For the treatment effect for the treated, exact matching constructs the coun-
terfactual for each treatment case using the control cases with identical values
on the variables in S. In the notation of Equation (4.15), exact matching uses
weights equal to 1/k for matched control cases, where k is the number of matches
selected for each target treatment case. Weights of 0 are given to all unmatched
control cases. If only one match is chosen randomly from among possible exact
matches, then ωi,j is set to 1 for the randomly selected match (from all avail-
able exact matches) and to 0 for all other control cases. Exact matching may
be combined with any of the matching methods described later.

Nearest-Neighbor Matching

For the treatment effect for the treated, nearest-neighbor matching constructs
the counterfactual for each treatment case using the control cases that are
closest to the treatment case on a unidimensional measure constructed from
the variables in S, usually an estimated propensity score but sometimes vari-
ants of propensity scores (see Althauser and Rubin 1970; Cochran and Rubin
1973; Rosenbaum and Rubin 1983a, 1985a, 1985b; Rubin 1973a, 1973b, 1976,

treatment and control groups, an average treatment effect among a subset of the treated can
be estimated.

17There is an ignorability variant of this mean-independence assumption: D is indepen-
dent of Y 0 conditional on S. One would always prefer a study design in which this more
encompassing form of independence holds. Resulting causal estimates would then hold under
transformations of the potential outcomes. This would be particularly helpful if the directly
mapped Y [defined as DY 1 + (1−D)Y 0] is not observed but some monotonic transformation
of Y is observed (as could perhaps be generated by a feature of measurement).

18And this is again weaker than having to assert an assumption of ignorability of treatment
assignment.
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1980a,1980b). The traditional algorithm randomly orders the treatment cases
and then selects for each treatment case the control case with the smallest dis-
tance. The algorithm can be run with or without replacement. With replace-
ment, a control case is returned to the pool after a match and can be matched
later to another treatment case. Without replacement, a control case is taken
out of the pool once it is matched.19

If only one nearest neighbor is selected for each treatment case, then ωi,j

is set equal to 1 for the matched control case and 0 for all other control cases.
One can also match multiple nearest neighbors to each target treatment case,
in which case ωi,j is set equal to 1/ki for the matched nearest neighbors, where
ki is the number of matches selected for each target treatment case i. Matching
more control cases to each treatment case results in lower expected variance
of the treatment effect estimate but also raises the possibility of greater bias,
because the probability of making more poor matches increases.

A danger with nearest-neighbor matching is that it may result in some very
poor matches for treatment cases. A version of nearest-neighbor matching,
known as caliper matching, is designed to remedy this drawback by restricting
matches to some maximum distance. With this type of matching, some treat-
ment cases may not receive matches, and thus the effect estimate will apply to
only the subset of the treatment cases matched (even if ignorability holds and
there is simply sparseness in the data).20

Interval Matching

Interval matching (also referred to as subclassification and stratification match-
ing) sorts the treatment and control cases into segments of a unidimensional
metric, usually the estimated propensity score, and then calculates the treat-
ment effect within these intervals (see Cochran 1968; Rosenbaum and Rubin
1983a, 1984; Rubin 1977). For each interval, a variant of the matching estima-
tor in Equation (4.15) is estimated separately, with ωi,j chosen to give the same
amount of weight to the treatment cases and control cases within each interval.
The average treatment effect for the treated is then calculated as the mean of the
interval-specific treatment effects, weighted by the number of treatment cases
in each interval. This method is nearly indistinguishable from nearest-neighbor
caliper matching with replacement when each of the intervals includes exactly
one treatment case.

19One weakness of the traditional algorithm when used without replacement is that the
estimate will vary depending on the initial ordering of the treatment cases. A second weakness
is that without replacement the sum distance for all treatment cases will generally not be the
minimum because control cases that might make better matches to later treatment cases may
be used early in the algorithm. See our discussion of optimal matching later.

20A related form of matching, known as radius matching (see Dehejia and Wahba 2002),
matches all control cases within a particular distance – the “radius” – from the treatment
case and gives the selected control cases equal weight. If there are no control cases within the
radius of a particular treatment case, then the nearest available control case is used as the
match.
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Kernel Matching

Developed by Heckman, Ichimura, Smith, and Todd (1998) and Heckman,
Ichimura, and Todd (1997, 1998) kernel matching constructs the counterfac-
tual for each treatment case using all control cases but weights each control
case based on its distance from the treatment case. The weights represented by
ωi,j in Equation (4.15) are calculated with a kernel function, G(.), that trans-
forms the distance between the selected target treatment case and all control
cases in the study. When the estimated propensity score is used to measure the
distance, kernel-matching estimators define the weight as

ωij =
G[ p̂(sj )−p̂(si )

an
]∑

j G[ p̂(sj )−p̂(si )
an

]
, (4.16)

where an is a bandwidth parameter that scales the difference in the estimated
propensity scores based on the sample size and p̂(.) is the estimated propensity
score as a function of its argument.21 The numerator of this expression yields a
transformed distance between each control case and the target treatment case.
The denominator is a scaling factor equal to the sum of all the transformed
distances across control cases, which is needed so that the sum of ωi,j is equal
to 1 across all control cases when matched to each target treatment case.

Although kernel-matching estimators appear complex, they are a natural ex-
tension of interval and nearest-neighbor matching: All control cases are matched
to each treatment case but weighted so that those closest to the treatment case
are given the greatest weight. Smith and Todd (2005) offer an excellent intuitive
discussion of kernel matching along with generalizations to local linear match-
ing (Heckman, Ichimura, Smith, and Todd 1998; Heckman, Ichimura, and Todd
1997, 1998) and local quadratic matching (Ham, Li, and Reagan 2003).

4.4.2 Which of These Basic Matching Algorithms Works
Best?

There is very little specific guidance in the literature on which of these matching
algorithms works best, and the answer very likely depends on the substantive
application. Smith and Todd (2005), Heckman, Ichimura, Smith, and Todd
(1998), and Heckman, Ichimura, and Todd (1997, 1998) have experimental data
against which matching estimators can be compared, and they argue for the
advantages of kernel matching (and a particular form of robust kernel match-
ing). To the extent that a general answer to this question can be offered, we
would suggest that nearest-neighbor caliper matching with replacement, interval
matching, and kernel matching are all closely related and should be preferred
to nearest-neighbor matching without replacement. If the point of a matching
estimator is to minimize bias by comparing target cases with similar matched

21Increasing the bandwidth increases bias but lowers variance. Smith and Todd (2005) find
that estimates are fairly insensitive to the size of the bandwidth.
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cases, then methods that make it impossible to generate poor matches should be
preferred.22 Matching on both the propensity score and the Mahalanobis metric
has also been recommended for achieving balance on higher-order moments (see
Diamond and Sekhon 2005; Rosenbaum and Rubin 1985b).23 Because there
is no clear guidance on which of these matching estimators is “best,” we con-
structed a fourth hypothetical example to give a sense of how often alternative
matching estimators yield appreciably similar estimates.

Matching Demonstration 4

For this example, we use simulated data for which we defined the potential out-
comes and treatment assignment patterns so that we can explore the relative
performance of alternative matching estimators. The former are estimated un-
der alternative scenarios with two different specifications of the propensity-score-
estimating equation. Unlike the hypothetical example in Matching Demon-
stration 3, we do not repeat the simulation for multiple samples but confine
ourselves to results on a single sample, as would be typical of any real-world
application.

Generation of the Dataset. The dataset that we constructed mimics the
dataset from the National Education Longitudinal Study (NELS) analyzed by
Morgan (2001). For that application, regression and matching estimators were
used to estimate the effect of Catholic schooling on the achievement of high
school students in the United States (for a summary of research on this ques-
tion, see Chapter 1). For our simulation here, we generated a dataset of 10,000
individuals with values for 13 baseline variables that resemble closely the joint
distribution of the similar variables in Morgan (2001). The variables for respon-
dents include dummy variables for race, region, urbanicity, whether they have
their own bedrooms, whether they live with two parents, an ordinal variable for
number of siblings, and a continuous variable for socioeconomic status. Then
we created an entirely hypothetical cognitive skill variable, assumed to reflect
innate and acquired skills in unknown proportions.24

22Another criterion for choosing among alternative matching estimators is relative efficiency.
Our reading of the literature suggests that little is known about the relative efficiency of these
estimators (see especially Abadie and Imbens 2006; Hahn 1998; Imbens 2004), even though
there are claims in the literature that kernel-based methods are the most efficient. The
efficiency advantage of kernel-matching methods is only a clear guide to practice if kernel-
based methods are known to be no more biased than alternatives. But the relative bias of
kernel-based methods is application dependent and should interact further with the bandwidth
of the kernel. Thus, it seems that we will know for sure which estimators are most efficient
for which types of applications only when statisticians discover how to calculate the sampling
variances of all alternative estimators. Thereafter, it should be possible to compute mean-
squared-error comparisons across alternative estimators for sets of typical applications.

23One method for matching on both the Mahalanobis metric and the propensity score is to
include the propensity score in the Mahalanobis metric. A second is to use interval matching
and divide the data into blocks by use of one metric and then match on the second metric
within blocks.

24To be precise, we generated a sample using a multinomial distribution from a race-by-
region-by-urbanicity grid from the data in Morgan (2001). We then simulated socioeco-
nomic status as random draws from normal distributions with means and standard deviations
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We then defined potential outcomes for all 10,000 individuals, assuming that
the observed outcome of interest is a standardized test taken at the end of high
school. For the potential outcome under the control (i.e., a public school ed-
ucation), we generated what-if test scores from a normal distribution, with an
expectation as a function of race, region, urbanicity, number of siblings, socioe-
conomic status, family structure, and cognitive skills. We then assumed that
the what-if test scores under the treatment (i.e., a Catholic school education)
would be equal to the outcome under the control plus a boosted outcome under
the treatment that is function of race, region, and cognitive skills (under the
assumption, based on the dominant position in the extant literature, that black
and Hispanic respondents from the north, as well as all of those with high pre-
existing cognitive skills, are disproportionately likely to benefit from Catholic
secondary schooling).

We then defined the probability of attending a Catholic school using a logit
with 26 parameters, based on a specification from Morgan (2001) along with an
assumed self-selection dynamic in which individuals are slightly more likely to
select the treatment as a function of the relative size of their individual-level
treatment effect.25 This last component of the logit creates a nearly insur-
mountable challenge, because in any particular application one would not have
such a variable with which to estimate a propensity score. That, however, is our
point in including this term, as individuals are thought, in many real-world ap-
plications, to be selecting from among alternative treatments based on accurate
expectations, unavailable as measures to researchers, of their likely gains from
alternative treatment regimes. The probabilities defined by the logit were then
passed to a binomial distribution, which resulted in 986 of the 10,000 simulated
students attending Catholic schools. Finally, observed outcomes were assigned
according to treatment status.

With the sample divided into the treatment group and the control group,
we calculated from the prespecified potential outcomes the true baseline average
treatment effects. The treatment effect for the treated is 6.96 in the simulated
data, whereas the treatment effect for the untreated is 5.9. In combination, the
average treatment effect is then 6.0.

Methods for Treatment Effect Estimation. In Table 4.6, we offer 12 separate
types of matching estimates. These are based on routines written for Stata
by three sets of authors: Abadie, Drukker, Herr, and Imbens (2004), Becker

estimated separately for each of the race-by-region-by-urbanicity cells. Then, we generated all
other variables iteratively, building on top of these variables, using joint distributions (where
possible) based on estimates from the NELS data. Because we relied on standard parametric
distributions, the data are smoother than the original NELS data.

25The index of the assumed logit was −4.6−.69(Asian)+.23(Hispanic) −.76(black) −.46 (na-
tive American) +2.7(urban) +1.5(northeast) + 1.3(north central) + .35(south) − .02(siblings)
−.018(bedroom) + .31(two parents) + .39(socioeconomic status) +.33(cognitive skills)
−.032(socioeconomic status squared) −.23(cognitive skills squared) −.084(socioeconomic
status)(cognitive skills) −.37(two parents)(black) + 1.6(northeast)(black) −.38(north central)
(black) + .72(south)(black) + .23(two parents)(Hispanic) −.74(northeast)(Hispanic) −1.3
(north central)(Hispanic) −.13(south)(Hispanic) + .25(individual treatment effect − average
treatment effect).
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and Ichino (2002), and Leuven and Sianesi (2003).26 We estimate all matching
estimators under two basic scenarios. First, we offer a set of estimates based on
poorly estimated propensity scores, derived from an estimating equation from
which we omitted nine interaction terms along with the cognitive skill variable.
The last specification error is particularly important because the cognitive skill
variable has a correlation of 0.401 with the outcome variable and 0.110 with the
treatment variable in the simulated data. For the second scenario, we included
the cognitive skill variable and the nine interaction terms. Both scenarios lack
an adjustment for the self-selection dynamic, in which individuals select into
the treatment partly as a function of their expected treatment effect.

Regarding the specific settings for the alternative matching estimators, which
are listed in the row headings of Table 4.6, the interval matching algorithm began
with five blocks and subdivided blocks until each block achieved balance on the
estimated propensity score across treatment and control cases. Nearest-neighbor
matching with replacement was implemented with and without a caliper of
0.001, in both one- and five-nearest-neighbor variants. Radius matching was
implemented with a radius of 0.001. For the kernel-matching estimators, we used
two types of kernels – Epanechnikov and Gaussian – and the default bandwidth
of 0.06 for both pieces of software. For the local linear matching estimator, we
used the Epanechnikov kernel with the default bandwidth of 0.08.

Results. We estimated treatment effects under the assumption that self-
selection on the individual-level Catholic school effect is present, and yet can-
not be adjusted for using a statistical model without a measure of individuals’
expectations. Thus, we operate under the assumption that only the treatment
effect for the treated has any chance of being estimated consistently, as in the
study by Morgan (2001) on which this example is based. We therefore compare
all estimates to the true simulated treatment effect for the treated, identified
earlier as 6.96

Estimates based on the poorly estimated propensity scores are reported in
the first column of Table 4.6, along with the implied bias as an estimate of the
treatment effect for the treated in the second column (i.e., the matching estimate
minus 6.96). As expected, all estimates have a substantial positive bias. Most
of the positive bias results from the mistaken exclusion of the cognitive skill
variable from the propensity-score-estimating equation.

Matching estimates made with the well-estimated propensity scores are re-
ported in the third column of Table 4.6, along with the expected bias in the
fourth column. On the whole, these estimates are considerably better. Having
the correct specification reduces the bias in those estimates with the largest
bias from column three, and on average all estimates oscillate around the true
treatment effect for the treated of 6.96.

We have demonstrated three basic points with this example. First, look-
ing across the rows of Table 4.6, one clearly sees that matching estimators and
different software routines yield different treatment effect estimates (even ones

26We do not provide a review of software routines because such a review would be imme-
diately out-of-date on publication. At present, three additional sets of routines seem to be in
use in the applied literature (see Hansen 2004b; Ho et al. 2004; Sekhon 2005).
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Table 4.6: Matching Estimates for the Simulated Effect of Catholic Schooling on
Achievement, as Specified in Matching Demonstration 4

Poorly specified propensity Well-specified propensity

score-estimating equation score-estimating equation

Method TT estimate Bias TT estimate Bias

Interval with variable 7.93 0.97 6.73 −0.23

blocks (B&I)

One nearest-neighbor 8.16 1.20 6.69 −0.27

with caliper = 0.001 (L&S)

One nearest-neighbor 7.90 0.94 6.62 −0.34

without caliper (A)

Five nearest-neighbors 7.97 1.01 7.04 0.08

with caliper = 0.001 (L&S)

Five nearest-neighbors 7.85 0.89 7.15 0.19

without caliper (A)

Radius with radius 8.02 1.06 6.90 −0.06

= 0.001 (L&S)
Radius with radius 8.13 1.17 7.29 0.33

= 0.001 (B&I)

Kernel with Epanechnikov 7.97 1.01 6.96 0.00

kernel (L&S)
Kernel with Epanechnikov 7.89 0.93 6.86 −0.10

kernel (B&I)

Kernel with Gaussian 8.09 1.13 7.18 0.22

kernel (L&S)

Kernel with Gaussian 7.97 1.01 7.03 0.07

kernel (B&I)

Local linear with 7.91 0.95 6.84 −0.12

Epanechnikov kernel (L&S)

Notes: B&I denotes the software of Becker and Ichino (2002); L&S denotes the

software of Leuven and Sianesi (2003); A denotes the software of Abadie et al. (2004).

that are thought to be mathematically equivalent). Thus, at least for the near
future, it will be crucial for researchers to examine multiple estimates of the
same treatment effect across estimators and software packages. The lack of sim-
ilarity across seemingly equivalent estimators from alternative software routines
is surprising, but we assume that this unexpected variation will dissipate with
software updates.

Second, matching estimators cannot compensate for an unobserved covariate
in S, which leads to comparisons of treatment and control cases that are not
identical in all relevant aspects other than treatment status. The absence of
the cognitive skill variable in this example invalidates both Assumption 1-S and
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2-S. The matching routines still balance the variables included in the propensity-
score-estimating equation, but the resulting matching estimates remain biased
and inconsistent for both the average treatment effect and the average treatment
effect for the treated.

Third, the sort of self-selection dynamic built into this example – in which
individuals choose Catholic schooling as a function of their expected gains from
Catholic schooling – makes estimation of both the average treatment effect
among the untreated and the average treatment effect impossible (because As-
sumption 1-S cannot be maintained). Fortunately, if all variables in S other
than anticipation of the individual-level causal effects are observed (i.e., includ-
ing cognitive skill in this example), then the average treatment effect among the
treated can be estimated consistently.27

Unfortunately, violation of the assumption of ignorable treatment assign-
ment (and of both Assumptions 1-S and 2-S) is the scenario in which most
analysts will find themselves, and this is the scenario to which we turn in the
next section. Before discussing what can be done in these situations, we first
close the discussion on which types of matching may work best.

4.4.3 Matching Algorithms That Seek Optimal Balance

For the hypothetical example in Matching Demonstration 4, we judged the qual-
ity of matching algorithms by examining the distance between the treatment ef-
fect estimates that we obtained and the true treatment effects that we stipulated
in constructing our hypothetical data. Because we generated only one sample,
these differences are not necessarily a very good guide to practice, even though
our main goal of the example was to show that alternative matching estimators
generally yield different results and none of these may be correct. That point
aside, it is generally recognized that the best matching algorithms are those
that optimize balance in the data being analyzed. Building on this consensus,
a broader set of matching algorithms is currently in development, which grows
out of the optimal matching proposals attributed to Rosenbaum (1989).

Matching is generally judged to be successful if, for both the treatment and
matched control groups, the distribution of the matching variables is the same.
When this result is achieved, the data are said to be balanced, as noted earlier.
[See also our discussion of Equation (3.7).] Assessing balance, however, can be
difficult for two reasons. First, evaluating the similarity of full distributions
necessitates going beyond an examination of differences in means (see Abadie

27At the same time, this example shows that even our earlier definition of a “perfect stratifi-
cation” is somewhat underspecified. According to the definition stated earlier, if self-selection
on the causal effect occurs, a perfect stratification is available only if variables that accurately
measure anticipation of the causal effect for each individual are also available and duly included
in S. Thus, perhaps it would be preferable to refer to three types of perfect stratification: one
for which Assumption 1-S is valid (which enables estimation of the average treatment effect
for the untreated), one for which Assumption 2-S is valid (which enables estimation of the
average treatment for the treated), and one for which both are valid (which enables estimation
of the average treatment effect, as well as the average treatment effects for the treated and
the untreated).
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2002). Second, the use of any hypothesis test of similarity has two associated
dangers. With small samples, the null hypothesis of no difference may be ac-
cepted when in fact the data are far from balanced (i.e., a generic type II error).
Second, with very large datasets, almost any difference, however small, is likely
to be statistically significant. As such, hypothesis tests are generally less useful
for assessing balance than standardized differences and their generalizations.28

Imai, King, and Stuart (2006) provide a full discussion of these issues.
If the covariates are not balanced, the estimation model for the propen-

sity score can be changed, for example, by the addition of interaction terms,
quadratic terms, or other higher-order terms. Or, matching can be performed
on the Mahalanobis metric in addition to the propensity score, perhaps nesting
one set of matching strategies within another. This respecification is not con-
sidered data mining because it does not involve examining the effect estimate.
But it can be labor intensive, and there is no guarantee that one will find the
best possible balance by simply reestimating the sorts of matching algorithms
introduced earlier, or by combining them in novel ways.

For this reason, two more general forms of matching have been proposed,
each of which is now fairly well developed. Rosenbaum (2002, Chapter 10) re-
ports on recent results for full optimal matching algorithms that he has achieved
with colleagues since Rosenbaum (1989). His algorithms seek to optimize bal-
ance and efficiency of estimation by searching through all possible matches that
could be made, after stipulating the minimum and maximum number of matches
for matched sets of treatment and control cases. Although full optimal matching
algorithms vary (see also Hansen 2004a), they are based on the idea of mini-
mizing the average distance between the estimated propensity scores among
matched cases. If the estimated propensity scores are correct, then this mini-
mization problem should balance S.

Diamond and Sekhon (2005) propose a general multivariate matching method
that uses a genetic algorithm to search for the match that achieves the best pos-
sible balance. Although their algorithm can be used to carry out matching after
the estimation of a propensity score, their technique is more general and can al-
most entirely remove the analyst from having to make any specification choices
other than designating the matching variables. Diamond and Sekhon (2005)
show that their matching algorithms provide superior balance in both Monte
Carlo simulations and a test with genuine data.29

28The standardized difference for a matching variable X is
|EN [xi |di =1]−EN [xi |di =0]|√

1
2VarN [xi |di =1]+ 1

2VarN [xi |di =0]
. Because this index is a scaled absolute difference in

the means of the X across treatment and control cases, it can be compared across alternative
Xs. It is generally a better criterion for balance assessment than t statistics are. However, like
t statistics, this index considers only differences in the mean of X across matched treatment
and control cases. Indices of higher moments should be considered as well.

29For Diamond and Sekhon (2005), balance is assessed by using t-tests of differences in
means and also bootstrapped Kolmogorov–Smirnov tests for the full distributions of the
matching variables. It is unclear how sensitive their results are to the usage of balance tests
that are insensitive to sample size. Their algorithm, however, appears general enough that
such modifications can be easily incorporated.
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Although there is good reason to expect that these types of matching al-
gorithms can outperform the nearest-neighbor, interval, and kernel-matching
algorithms by the criteria of balance, they are considerably more difficult to im-
plement in practice. With software developments underway, these disadvantages
will be eliminated.

4.5 Matching When Treatment Assignment is
Nonignorable

What if neither Assumption 1-S nor Assumption 2-S is valid because we observe
only a subset of the variables in S, which we will now denote by X? We
can still match on X using the techniques just summarized, as we did for the
first column of Table 4.6 in the hypothetical example for Matching Demonstra-
tion 4.

Consider, for example, the working paper of Sekhon (2004), in which a
matching algorithm is used to balance various predictors of voting at the county
level in an attempt to determine whether or not John Kerry lost votes in the
2004 presidential election campaign because optical scan voting machines were
used instead of direct electronic voting machines in many counties (see Subsec-
tion 1.3.2 on voting technology effects in Florida for the 2000 election). Sekhon
shows that it is unlikely that voting technology caused John Kerry to lose votes.
In this analysis, ignorability is not asserted in strict form, as it is quite clear
that unobserved features of the counties may well have been correlated with
both the distribution of votes and voting technology decisions. Nonetheless, the
analysis is convincing because the predictors of treatment assignment are quite
rich, and it is hard to conceive of what has been left out.

When in this position, however, it is important to concentrate on estimating
only one type of treatment effect (usually the treatment effect for the treated,
although perhaps the unconditional average treatment effect). Because a cru-
cial step must be added to the project – assessing the level of bias that may
arise from possible nonignorability of treatment – focusing on a very specific
treatment effect of primary interest helps to ground a discussion of an esti-
mate’s limitations. Then, after using one of the matching estimators of the
last section, one should use the data to minimize bias in the estimates and, if
possible, proceed thereafter to a sensitivity analysis (which we will discuss later
in Chapter 6).

4.6 Remaining Practical Issues in Matching
Analysis

In this section, we discuss the remaining practical issues that analysts who
consider using matching estimators must confront. First, we discuss the issue of
how to identify empirically the common support of the matching variables. Then
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we discuss what is known about the sampling variance of alternative matching
estimators, and we give a guide to usage of the standard errors provided by
existing software. Finally, we consider multivalued treatments.

4.6.1 Assessing the Region of Common Support

In practice, there is often good reason to believe that some of the lack of observed
overlap of S for the treatment and control cases may have emerged from system-
atic sources, often related to the choice behavior of individuals (see Heckman,
Ichimura, Smith, and Todd 1998). In these situations, it is not a sparseness
problem that must be corrected. Instead, a more fundamental mismatch be-
tween the observed treatment and control cases must be addressed, as in our
earlier hypothetical example in Matching Demonstration 2. Treatment cases
that have no possible counterpart among the controls are said to be “off the
support” of S for the control cases, and likewise for control cases who have no
possible counterparts among the treatment cases.30

When in this situation, applied researchers who use matching techniques to
estimate the treatment effect for the treated often estimate a narrower treatment
effect. Using one of the variants of the matching estimators outlined earlier,
analysis is confined only to treatment cases whose propensity scores fall between
the minimum and maximum propensity scores in the control group. Resulting
estimates are then interpreted as estimates of a narrower treatment effect: the
common-support treatment effect for the treated (see Heckman, Ichimura, and
Todd 1997, 1998; see also Crump, Hotz, Imbens, and Mitnik 2006).

The goal of these sorts of techniques is to exclude at the outset those treat-
ment cases that are beyond the observed minima and maxima of the probability
distributions of the variables in S among the control cases (and vice versa). Al-
though using the propensity score to find the region of overlap may not capture
all dimensions of the common support (as there may be interior spaces in the
joint distribution defined by the variables in S), subsequent matching is then
expected to finish the job.

Sometimes matching on the region of common support helps to clarify and
sharpen the contribution of a study. When estimating the average treatment
effect for the treated, there may be little harm in throwing away control cases
outside the region of common support if all treatment cases fall within the sup-
port of the control cases. And, even if imposing the common-support condition
results in throwing away some of the treatment cases, this can be considered
an important substantive finding, especially for interpreting the treatment ef-
fect estimate. In this case, the resulting estimate is the treatment effect for a
subset of the treated only, and, in particular, a treatment effect estimate that
is informative only about those in the treatment and control groups who are
equivalent with respect to observed treatment selection variables. In some ap-
plications, this is precisely the estimate needed (e.g., when evaluating whether

30Support is often given slightly different definitions depending on the context, although
most definitions are consistent with a statement such as this: the union of all intervals of a
probability distribution that have true nonzero probability mass.
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a program should be expanded in size in order to accommodate more treatment
cases but without changing eligibility criteria).31 We will discuss these marginal
treatment effects later in Chapter 7.

4.6.2 The Expected Variance of Matching Estimates

After computing a matching estimate of some form, most researchers naturally
desire a measure of its expected variability across samples of the same size from
the same population, either to conduct hypothesis tests or to offer an informed
posterior distribution for the causal effect that can guide subsequent research.
We did not, however, report standard errors for the treatment effect estimates
reported in Table 4.6 for the hypothetical example in Matching Demonstra-
tion 4.

Most of the available software routines provide such estimates. For example,
for the software of Abadie and his colleagues, the one- and five-nearest-neighbor
matching estimates of 7.90 and 7.85 in the first column of Table 4.6 have esti-
mated standard errors of .671 and .527, respectively. Nonetheless, each of the
software routines we used relies on a different methodology for calculating such
estimates, and given their lack of agreement we caution against too strong of
a reliance on the standard error estimates produced by any one software rou-
tine, at least at present. Much remains to be worked out before commonly
accepted standards for calculating standard errors are available. For now, our
advice is to report a range of standard errors produced by alternative software
for corresponding matching estimates.32

We recommend caution for the following reasons. In some simple cases,
there is widespread agreement on how to properly estimate standard errors for
matching estimators. For example, if a perfect stratification of the data can be
found, the data can be analyzed as if they are a stratified random sample with
the treatment randomly assigned within each stratum. In this case, the variance

31Coming to terms with these common-support issues has become somewhat of a specialized
art form within the empirical matching literature, and some guidance is available. Heckman,
Ichimura, and Todd (1998; see also Smith and Todd 2005) recommend trimming the region
of common support to eliminate cases in regions of the common support with extremely low
density (and not just with respect to the propensity score but for the full distribution of S).
This involves selecting a minimum density (labeled the “trimming level”) that is greater than
zero. Heckman and his colleagues have found that estimates are rather sensitive to the level
of trimming in small samples, with greater bias when the trimming level is lower. However,
increasing the trimming level excludes more treatment cases and results in higher variance.
More recently, Crump et al. (2006) have developed alternative optimal weighting estimators
that are more general but designed to achieve the same goals.

32Two of the three matching software routines that we utilized allow one to calculate boot-
strapped standard errors in Stata. This is presumably because these easy-to-implement meth-
ods were once thought to provide a general framework for estimating the standard errors of
alternative matching estimators and hence were a fair way to compare the relative efficiency
of alternative matching estimators (see Tu and Zhou 2002). Unfortunately, Abadie and Im-
bens (2004) show that conventional bootstrapping is fragile and will not work in general for
matching estimators. Whether generalized forms of bootstrapping may still be used effectively
remains to be determined.



4.6. Remaining Practical Issues in Matching Analysis 119

estimates from stratified sampling apply. But rarely is a perfect stratification
available in practice without substantial sparseness in the data at hand. Once
stratification is performed with reference to an estimated propensity score, the
independence that is assumed within strata for standard error estimates from
stratified sampling methodology is no longer present. And, if one adopts a
Bayesian perspective, the model uncertainty of the propensity-score-estimating
equation must be represented in the posterior.33

Even so, there is now also widespread agreement that convergence results
from nonparametric statistics can be used to justify standard error estimates for
large samples. A variety of scholars have begun to work out alternative methods
for calculating such asymptotic standard errors for matching estimators, after
first rewriting matching estimators as forms of nonparametric regression (see
Abadie and Imbens 2006; Hahn 1998; Heckman, Ichimura, and Todd 1998;
Hirano et al. 2003; Imbens 2004). For these large-sample approaches, however,
it is generally assumed that matching is performed directly with regard to the
variables in S, and the standard errors are appropriate only for large samples in
which sparseness is vanishing. Accordingly, the whole idea of using propensity
scores to solve rampant sparseness problems is almost entirely dispensed with,
and estimated propensity scores then serve merely to clean up whatever chance
variability in the distribution of S across treatment and control cases remains
in a finite sample.

Abadie and Imbens (2006) show that one can use brute force computa-
tional methods to estimate sample variances at points of the joint distribution
of S. When combined with nonparametric estimates of propensity scores, one
can obtain consistent estimates of all of the pieces of their proposed formu-
las for asymptotic standard errors. And, yet, none of this work shows that
the available variance estimators remain good guides for the expected sampling
variance of matching estimators under different amounts of misspecification of
the propensity-score-estimating equation, or when matching is attempted only
with regard to the estimated propensity score rather than completely on the
variables in S. Given that this literature is still developing, it seems prudent
to report alternative standard errors from alternative software routines and to
avoid drawing conclusions that depend on accepting any one particular method
for calculating standard errors.

33There is also a related set of randomization inference techniques, built up from con-
sideration of all of the possible permutations of treatment assignment patterns that could
theoretically emerge from alternative enactments of the same treatment assignment routine
(see Rosenbaum 2002). These permutation ideas generate formulas for evaluating specific
null hypotheses, which, from our perspective, are largely uncontroversial. They are especially
reasonable when the analyst has deep knowledge of a relatively simple treatment assignment
regime and has reason to believe that treatment effects are constant in the population. Al-
though Rosenbaum provides large-sample approximations for these permutation-based tests,
the connections to the recent econometrics literature that draws on nonparametric convergence
results have not yet been established.
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4.6.3 Matching Estimators for Many-Valued Causes

Given the prevalence of studies of many-valued causes, it is somewhat odd to
place this section under the more general heading of practical issues. But this
is appropriate because most of the complications of estimating many-valued
treatment effects are essentially practical, even though very challenging in some
cases.34

Recall the setup for many-valued causes from Chapter 2, Appendix B, where
we have a set of J treatment states, a set of J causal exposure dummy variables,
{Dj}J

j=1, and a corresponding set of J potential outcome random variables,
{Y Dj}J

j=1. The treatment received by each individual is Dj∗, and the outcome
variable for individual i, yi, is then equal to yDj∗

i . For j �= j∗, the potential
outcomes of individual i exist as J − 1 counterfactual outcomes yDj

i .
There are two basic approaches to matching with many-valued treatments

(see Rosenbaum 2002, Section 10.2.4). The most straightforward and general
approach is to form a series of two-way comparisons between the multiple treat-
ments, estimating a separate propensity score for each contrast between each
pair of treatments.35 After the estimated propensity scores are obtained, treat-
ment effect estimates are calculated pairwise between treatments. Care must
be taken, however, to match appropriately on the correct estimated propensity
scores. The observed outcomes for individuals with equivalent values on alter-
native propensity scores cannot be meaningfully compared (see Imbens 2000,
Section 5).

For example, for three treatments with J equal to 1, 2, and 3, one would first
estimate three separate propensity scores, corresponding to three contrasts for
the three corresponding dummy variables: D1 versus D2, D1 versus D3, and
D2 versus D3. One would obtain three estimated propensity scores: PrN [d1i =
1|d1i = 1 or d2i = 1, si], PrN [d1i = 1|d1i = 1 or d3i = 1, si], and PrN [d2i =
1|d2i = 1 or d3i = 1, si]. One would then match separately for each of the
three contrasts leaving, for example, those with d3i = 1 unused and unmatched
when matching on the propensity score for the comparison of treatment 1 versus
treatment 2. At no point would one match together individuals with equivalent
values for alternative estimated propensity scores. For example, there is no
meaningful causal comparison between two individuals, in which for the first
individual d2i = 1 and PrN [d1i = 1|d1i = 1 or d2i = 1, si] = .6 and for the
second individual d3i = 1 and PrN [d1i = 1|d1i = 1 or d3i = 1, si] = .6.

When the number of treatments is of modest size, such as only four or five
alternatives, there is much to recommend in this general approach. However, if

34Although we could present these methods with reference to methods of stratification as
well, we consider the most general case in which propensity score methods are used to address
sparseness issues as well.

35Some simplification of the propensity score estimation is possible. Rather than estimate
propensity scores separately for each pairwise comparison, one can use multinomial probit
and logit models to estimate the set of propensity scores (see Lechner 2002a, 2000b; see also
Hirano and Imbens 2004; Imai and van Dyk 2004; Imbens 2000). One must still, however,
extract the right contrasts from such a model in order to obtain an exhaustive set of estimated
propensity scores.
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the number of treatments is considerably larger, then this fully general approach
may be infeasible. One might then choose to simply consider only a subset of
causal contrasts for analysis, thereby reducing the aim of the causal analysis.

If the number of treatments can be ordered, then a second approach devel-
oped by Joffe and Rosenbaum (1999) and implemented in Lu, Zanutto, Hornik,
and Rosenbaum (2001) is possible. These models generally go by the name of
dose-response models because they are used to estimate the effects of many dif-
ferent dose sizes of the same treatment, often in comparison with a base dosage
of 0 that signifies no treatment.

Rather than estimate separate propensity scores for each pairwise compar-
ison, an ordinal probability model is estimated and the propensity score is de-
fined as a single dimension of the predictors of the model (i.e., ignoring the
discrete shifts in the odds of increasing from one dosage level to the next that
are parameterized by the estimated cut-point parameters for each dosage level).
Thereafter, one then performs a slightly different form of matching in which
optimal matched sets are formed by two criteria, which Lu et al. (2001:1249)
refer to as “close on covariates; far apart on doses.” The idea here is to form
optimal contrasts between selected sets of comparable individuals to generate
estimates of counterfactually defined responses. The goal is to be able to offer a
predicted response to any shift in a dosage level from any k′ to k′′, where both
k′ and k′′ are between the smallest and largest dosage values observed.

Again, however, these methods assume that the treatment values can be
ordered, and further that the propensity scores can be smoothed across dose
sizes after partialing out piecewise shifts. Even so, these assumptions are no
more severe than what is typically invoked implicitly in regression modeling
approaches to causality, as we discuss later. Thus, ordered probability models
can be used to consistently estimate treatment effects for many-valued causes
of a variety of types (see also Hirano and Imbens 2004 and Imai and van Dyk
2004 for further details).

4.7 Conclusions

We conclude this chapter by discussing the strengths and weaknesses of match-
ing as a method for causal inference from observational data. Some of the
advantages of matching methods are not inherent or unique to matching itself
but rather are the result of the analytical framework in which most matching
analyses are conducted. Matching focuses attention on the heterogeneity of the
causal effect. It forces the analyst to examine the alternative distributions of
covariates across those exposed to different levels of the causal variable. The
process of examining the region of common support helps the analyst to recog-
nize which cases in the study are incomparable, such as which control cases one
should ignore when estimating the treatment effect for the treated and which
treatment cases may have no meaningful counterparts among the controls.

Although these are the advantages of matching, it is important that we not
oversell the potential power of the techniques. First, even though the extension
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of matching techniques to multivalued treatments has begun, readily available
matching estimators can be applied only to treatments or causal exposures that
are binary. Second, as we just discussed, our inability to estimate the variance of
most matching estimators with commonly accepted methods is a genuine weak-
ness (although it is reasonable to expect that this weakness can be overcome
in the near future). Third, as the hypothetical example in Matching Demon-
stration 4 showed, different matching estimators can lead to somewhat different
estimates of causal effects, and as yet there is little guidance on which types of
matching estimators work best for different types of applications.

Finally, we close by drawing attention to a common misunderstanding about
matching estimators. In much of the applied literature on matching, the propen-
sity score is presented as a single predictive dimension that can be used to bal-
ance the distribution of important covariates across treatment and control cases,
thereby warranting causal inference. As we showed in the hypothetical exam-
ple in Matching Demonstration 4, perfect balance on important covariates does
not necessarily warrant causal claims. If one does not know of variables that,
in an infinite sample, would yield a perfect stratification, then simply predict-
ing treatment status from the observed variables with a logit model and then
matching on the estimated propensity score does not solve the causal inference
problem. The estimated propensity scores will balance those variables across
the treatment and control cases. But the study will remain open to the sort
of “hidden bias” explored by Rosenbaum (2002) but that is often labeled selec-
tion on the unobservables in the social sciences. Matching is thus a statistical
method for analyzing available data, which may have some advantages in some
situations.
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