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Review of Large-N Causal Inference

É How to analyze data for causal inference:

1. Causal Inference logic -> Regression Structure
2. Outcome Type -> Regression Model
3. Treatment scale & Outcome scale -> Interpretation
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Treatment Assignment Mechanisms

Analysis Types and Assumptions

Week Researcher
Controls
Treatment
Assign-
ment?

Treatment
Assign-
ment Inde-
pendent of
Potential
Outcomes

SUTVA Additional
Assump-
tions

Controlled Experiments

1 Field Experiments Ø Ø Ø

2 Survey and Lab Experiments Ø Ø Ø Controlled Environment for
treatment exposure

Natural Experiments

3 Randomized Natural Experiments X Ø Ø Compliance with
Randomization

4 Instrumental Variables X Ø Ø First stage and Exclusion Re-
striction (Instrument explains
treatment but not outcome)

5 Regression Discontinuity X Ø Ø Continuity of covariates; No
manipulation; No compounding
discontinuities

Observational Studies

6 Difference-in-Differences X X Ø No Time-varying confounders;
Parallel Trends

7 Controlling for Confounding X X Ø Blocking all Back-door paths

8 Matching X X Ø Overlap in sample
characteristics
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Regression Structure

What is the Treatment Assignment Mechanism?

Randomized (Experimental) As-If Random (at least in part) Observational

Y ~ D RDD
(Y ~ R + D)

IV
(D ~ Z; Y ~ D_hat)

Diff-in-Diff
(Y ~ D + T + T:D) Matching

Controlling
(Y ~ D + X_1 + X_2)
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Outcome Variable Type

É Continuous -> Ordinary Least Squares

zelig(Formula,data=data,model="ls")

É Binary -> Logit

zelig(Formula,data=data,model="logit")

É Unordered categories -> Multinomial logit

zelig(Formula,data=data,model="mlogit")

É Ordered categories -> Ordered logit

zelig(Formula,data=data,model="ologit")
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Interpretation

É For OLS regression:
É A 1 [unit1] change in treatment [causes/is associated with]

a β [unit2] change in the outcome
É unit1 : Same units as treatment variable

É Unless treatment is log(), then unit1 is 1% and unit2 is
β∗ n(101100 ) (not %)

É Which is almost the same as β
100 (not %)

É unit2 : Same units as outcome variable
É Unless outcome is log(), then unit2 is 100∗ (ep(β) − 1)%
É Which is almost the same as 100∗ β%
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Interpretation

zelig(mpg wt,data=mtcars,model="ls")

Dependent variable:
mpg

wt −5.344∗∗∗

(0.559)

Constant 37.285∗∗∗

(1.878)

Observations 32
R2 0.753
Adjusted R2 0.745
Residual Std. Error 3.046 (df = 30)
F Statistic 91.375∗∗∗ (df = 1; 30)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Interpretation

zelig(mpg log(wt),data=mtcars,model="ls")

Dependent variable:
mpg

wt −17.086∗∗∗

(1.510)

Constant 39.257∗∗∗

(1.758)

Observations 32
R2 0.810
Adjusted R2 0.804
Residual Std. Error 2.669 (df = 30)
F Statistic 128.016∗∗∗ (df = 1; 30)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Interpretation

zelig(log(mpg) wt,data=mtcars,model="ls")

Dependent variable:
log(mpg)

wt −0.272∗∗∗

(0.025)

Constant 3.832∗∗∗

(0.084)

Observations 32
R2 0.798
Adjusted R2 0.791
Residual Std. Error 0.136 (df = 30)
F Statistic 118.191∗∗∗ (df = 1; 30)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Interpretation

É For Logit regression:
É A 1 [unit1] change in treatment [causes/is associated with]

a β change in the log-odds of the outcome

É A 1 [unit1] change in treatment [causes/is associated with]
a 100∗ (epβ − 1)% change in the odds (relative
probability) of the outcome
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Interpretation

zelig(am wt,data=mtcars,model="logit") mtcars

Dependent variable:
am

wt −0.353∗∗∗

(0.067)

Constant 1.542∗∗∗

(0.226)

Observations 32
R2 0.480
Adjusted R2 0.462
Residual Std. Error 0.366 (df = 30)
F Statistic 27.642∗∗∗ (df = 1; 30)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Interpretation

É For Ordered Logit regression:
É A 1 [unit1] change in treatment [causes/is associated with]

a β change in the log-odds of moving up one unit on the
outcome scale

É A 1 [unit1] change in treatment [causes/is associated with]
a 100∗ (epβ − 1)% change in the odds (relative
probability) of moving up one unit on on the outcome scale
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Interpretation

zelig(cyl wt,data=mtcars,model="ologit")

Dependent variable:
cyl

wt 5.186∗∗∗

(1.506)

Observations 32

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Interpretation

É For Unordered Logit regression:
É If there are C outcome categories, we get C − 1 coefficients

on each treatment variable

É A 1 [unit1] change in treatment [causes/is associated with]
a βC change in the log-odds of this outcome category
compared to the base category

É A 1 [unit1] change in treatment [causes/is associated with] a
100∗ (ep(βC)− 1) change in the odds (relative probability)
of this outcome category compared to the base category
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Interpretation

zelig(color wt,data=mtcars,model="mlogit")

[1] "Black" "Blue" "Red" "Silver"

Estimate Std. Error z value Pr(>|z|)

(Intercept):1 0.236 1.768 0.134 0.894
(Intercept):2 0.858 1.769 0.485 0.628
(Intercept):3 -0.834 1.800 -0.463 0.643

wt:1 -0.074 0.530 -0.139 0.889
wt:2 -0.276 0.545 -0.505 0.613
wt:3 0.249 0.517 0.482 0.630
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Comparative Case Studies

É Necessary when there are few measurable cases of our
treatment/outcome

É Exactly the same causal inference logic as Large-N

É We need counterfactuals to estimate treatment effects:
Comparative Cases

É Even if we can ’observe’ the causal process, we can easily
make mistakes

É The aim is to go beyond description
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Comparative Case Studies

É Why can’t we achieve causal inference from single case
studies?

É If we truly have only one ’treated’ observation, we cannot
know what would have happened in the absence of
treatment

É These case studies can help generate hypotheses...

É And they can maybe reject or weaken a theory...

É But they cannot confirm a theory

É We need variation in the dependent variable if we are to
explain it

É Common error: "research that tries to explain the outbreak
of war with studies only of wars" (KKV)
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Comparative Case Studies

É Similarities with Large-N:

É Same challenges to inference: confounding, selection,
reverse causation

É Same assumptions required: SUTVA, Balance on all
confounders

É Differences with Large-N:
É Fewer comparisons: No uncertainty measure or confidence

intervals. What’s our standard of evidence?
É p-values aren’t the only source of credibility (Slater and Ziblatt

2013)
É Statistical Inference: Non-random cases, so generalization is

harder
É Harder to balance confounders: More variables than cases!
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Comparative Case Studies

É In a small-N study, what causal inference technique is most
useful?

É Diff-in-diff plausible if we have time-series data
É IV may be possible if there is some as-if random assignment,

eg. leader death from cancer
É Or an RDD, eg. just missing out on WB loans due to GDP

measure
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Comparative Case Studies

É But most commonly, we are using a matching strategy:

É Matching to ensure balance on confounders through case
selection - prune unmatched cases

É Clearly we can’t match on everything, so focus on getting
balance on key confounders/alternative theories

É Our Large-N dataset after matching might look very
similar to a comparative case study
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Comparative Case Studies

É Case Selection:

É Don’t confuse two distinct considerations in choosing cases:

1. Causal Inference (internal validity) - can our cases tell us with
confidence that D causes Y?

2. Population Inference (external validity) - How much can we
generalize about this causal effect to a broader population?

É Ideally we want both: Control and representative variation
É Our goal is not to explain why revolution happened in Iran,

but why it happens generally
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Comparative Case Studies

É Case Selection:

É Random sampling is fine! It directly helps us generalize
É And it helps us avoid explicit bias in causal inference
É But:

É Randomization does not guarantee enough variation in the
treatment and outcome in small samples

É Randomization does not guarantee balance on confounders in
small samples

É Randomized sampling is not the same as randomized treatment
É So even if we randomize, need to check for balance and

variation
É Probably easier to ’block’ on key confounders and impose

variation in treatment - purposive sampling
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É We want to explain interesting things, so we often pick

’extreme’ cases, but the extremeness might reflect
confounders, not the treatment
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É Eg. cases where ’deterrence’ fails coincide with poor

communication
É But communication is also poor every second that deterrence

worked!
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É Achieving generalizability (population inference) depends on
our cases being representative

É If we want to compare mens and womens running speeds,
DO NOT pick Usain Bolt and Florence Griffith-Joyner

É Pick units with ’median’ values - or a range of values - on the
confounding and outcome variables

É Do this at the same time as balancing confounders - hard!
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É Most different cases: When searching for a hypothesis to
explain Y
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mismeasurement of a key case?
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É Treatment: Party formed by violent conflict
É Control: Party not formed by violent conflict
É Treatment Assignment: Complex historical processes
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É Levitsky and Way (2003)

É Estimating the causal effect is easy:

Control Treated

Regime collapse Kenya, Zambia

Regime survival Mozambique,
Zimbabwe
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Collective Action

É Levitsky and Way (2003)
É The ’work’ is in measuring the variables and controlling for

alternative explanations

É Is self-selection a concern? Not so much - hard for a leader to
choose their party origins

É Confounders are identified from alternative theories that
explain the outcome

É Our cases must be balanced on these variables
É Duration in power
É Strength of opposition
É All experienced fiscal crisis
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