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Part I

Causal inference without models





Chapter 1
A DEFINITION OF CAUSAL EFFECT

By reading this book you are expressing an interest in learning about causal inference. But, as a human being,

you have already mastered the fundamental concepts of causal inference. You certainly know what a causal effect

is; you clearly understand the difference between association and causation; and you have used this knowledge

constantly throughout your life. In fact, had you not understood these causal concepts, you would have not

survived long enough to read this chapter–or even to learn to read. As a toddler you would have jumped right

into the swimming pool after observing that those who did so were later able to reach the jam jar. As a teenager,

you would have skied down the most dangerous slopes after observing that those who did so were more likely to

win the next ski race. As a parent, you would have refused to give antibiotics to your sick child after observing

that those children who took their medicines were less likely to be playing in the park the next day.

Since you already understand the definition of causal effect and the difference between association and cau-

sation, do not expect to gain deep conceptual insights from this chapter. Rather, the purpose of this chapter is

to introduce mathematical notation that formalizes the causal intuition that you already possess. Make sure that

you can match your causal intuition with the mathematical notation introduced here. This notation is necessary

to precisely define causal concepts, and we will use it throughout the book.

1.1 Individual causal effects

Zeus is a patient waiting for a heart transplant. On January 1, he receives

a new heart. Five days later, he dies. Imagine that we can somehow know,

perhaps by divine revelation, that had Zeus not received a heart transplant

on January 1, he would have been alive five days later. Equipped with this

information most would agree that the transplant caused Zeus’s death. The

heart transplant intervention had a causal effect on Zeus’s five-day survival.

Another patient, Hera, also received a heart transplant on January 1. Five

days later she was alive. Imagine we can somehow know that, had Hera not

received the heart on January 1, she would still have been alive five days later.

Hence the transplant did not have a causal effect on Hera’s five-day survival.

These two vignettes illustrate how humans reason about causal effects:

We compare (usually only mentally) the outcome when an action  is taken

with the outcome when the action  is withheld. If the two outcomes differ,

we say that the action  has a causal effect, causative or preventive, on the

outcome. Otherwise, we say that the action  has no causal effect on the

outcome. Epidemiologists, statisticians, economists, and other social scientists

often refer to the action  as an intervention, an exposure, or a treatment.

To make our causal intuition amenable to mathematical and statistical

analysis we will introduce some notation. Consider a dichotomous treatment

variable  (1: treated, 0: untreated) and a dichotomous outcome variable Capital letters represent random

variables. We assume subjects are

independent and identically distrib-

uted and thus suppress the individ-

ual subscript  in  and the other

variables.

(1: death, 0: survival). In this book we refer to variables such as  and 

that may have different values for different individuals or subjects as random

variables. Let  =1 (read  under treatment  = 1) be the outcome variable

Lower case letters denote particular

values of a random variable.

that would have been observed under the treatment value  = 1, and  =0

(read  under treatment  = 0) the outcome variable that would have been
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observed under the treatment value  = 0.  =1 and  =0 are also random

variables. Zeus has  =1 = 1 and  =0 = 0 because he died when treatedWe abbreviate the expression “in-

dividual  has outcome  = 1” by

writing  = 1 , and analogously

for other random variables.

but would have survived if untreated, while Hera has  =1 = 0 and  =0 = 0

because she survived when treated and would also have survived if untreated.

We can now provide a formal definition of a causal effect for an individ-

ual : the treatment  has a causal effect on an individual’s outcome  if

 =1 6=  =0 for the individual. Thus the treatment has a causal effect onCausal effect for individual :

 =1
 6=  =0

 Zeus’s outcome because  =1 = 1 6= 0 =  =0, but not on Hera’s outcome

because  =1 = 0 =  =0. The variables  =1 and  =0 are referred to

as potential outcomes or as counterfactual outcomes. Some authors prefer the

term “potential outcomes” to emphasize that, depending on the treatment that

is received, either of these two outcomes can be potentially observed. Other

authors prefer the term “counterfactual outcomes” to emphasize that these

outcomes represent situations that may not actually occur (that is, counter to

the fact situations).

For each subject, one of the counterfactual outcomes–the one that corre-

sponds to the treatment value that the subject actually received–is actually

factual. For example, because Zeus was actually treated ( = 1), his counter-

factual outcome under treatment  =1 = 1 is equal to his observed (actual)

outcome  = 1. That is, a subject with observed treatment  equal to , has

observed outcome  equal to his counterfactual outcome  . This equality

can be succinctly expressed as  =   where   denotes the counterfactual

  evaluated at the value  corresponding to the subject’s observed treatment

. The equality  =   is referred to as consistency.Consistency:

if  = , then  
 =   =  Individual causal effects are defined as a contrast of the values of counterfac-

tual outcomes, but only one of those outcomes is observed for each individual–

the one corresponding to the treatment value actually experienced by the sub-

ject. All other counterfactual outcomes remain unobserved. The unhappy

conclusion is that, in general, individual causal effects cannot be identified,

i.e., computed from the observed data, because of missing data. (See Fine

Point 2.1 for a possible exception.)

1.2 Average causal effects

We needed three pieces of information to define an individual causal effect: an

outcome of interest, the actions  = 1 and  = 0 to be compared, and the

individual whose counterfactual outcomes  =0 and  =1 are to be compared.

However, because identifying individual causal effects is generally not possible,

we now turn our attention to an aggregated causal effect: the average causal

effect in a population of individuals. To define it, we need three pieces of

information: an outcome of interest, the actions  = 1 and  = 0 to be

compared, and a well defined population of individuals whose outcomes  =0

and  =1 are to be compared.

Take Zeus’s extended family as our population of interest. Table 1.1 shows

the counterfactual outcomes under both treatment ( = 1) and no treatment

( = 0) for all 20 members of our population. Let us first focus our attention

on the last column: the outcome  =1 that would have been observed for

each individual if they had received the treatment (a heart transplant). Half

of the members of the population (10 out of 20) would have died if they had

received a heart transplant. That is, the proportion of individuals that would

have developed the outcome had all population subjects received treatment
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Fine Point 1.1

Interference between subjects. An implicit assumption in our definition of counterfactual outcome is that a subject’s

counterfactual outcome under treatment value  does not depend on other subjects’ treatment values. For example,

we implicitly assumed that Zeus would die if he received a heart transplant, regardless of whether Hera also received a

heart transplant. That is, Hera’s treatment value did not interfere with Zeus’s outcome. On the other hand, suppose

that Hera’s getting a new heart upsets Zeus to the extent that he would not survive his own heart transplant, even

though he would have survived had Hera not been transplanted. In this scenario, Hera’s treatment interferes with Zeus’s

outcome. Interference between subjects is common in studies that deal with contagious agents or educational programs,

in which an individual’s outcome is influenced by their social interaction with other population members. In the presence

of interference, the counterfactual  
 for an individual  is not well defined because an individual’s outcome depends

also on other individuals’ treatment values. As a consequence “the causal effect of heart transplant on Zeus’s outcome”

is not well defined when there is interference. Rather, one needs to refer to “the causal effect of heart transplant on

Zeus’s outcome when Hera does not get a new heart” or “the causal effect of heart transplant on Zeus’s outcome when

Hera does get a new heart.” If other relatives and friends’ treatment also interfere with Zeus’s outcome, then one may

need to refer to the causal effect of heart transplant on Zeus’s outcome when “no relative or friend gets a new heart,”

“when only Hera gets a new heart,” etc. because the causal effect of treatment on Zeus’s outcome may differ for each

particular allocation of hearts. The assumption of no interference was labeled “no interaction between units” by Cox

(1958), and is included in the “stable-unit-treatment-value assumption (SUTVA)” described by Rubin (1980). Unless

otherwise specified, we will assume no interference throughout this book.

 = 1 is Pr[ =1 = 1] = 1020 = 05. Similarly, from the other column of

Table 1.1, we can conclude that half of the members of the population (10Table 1.1

 =0  =1

Rheia 0 1

Kronos 1 0

Demeter 0 0

Hades 0 0

Hestia 0 0

Poseidon 1 0

Hera 0 0

Zeus 0 1

Artemis 1 1

Apollo 1 0

Leto 0 1

Ares 1 1

Athena 1 1

Hephaestus 0 1

Aphrodite 0 1

Cyclope 0 1

Persephone 1 1

Hermes 1 0

Hebe 1 0

Dionysus 1 0

out of 20) would have died if they had not received a heart transplant. That

is, the proportion of subjects that would have developed the outcome had all

population subjects received no treatment  = 0 is Pr[ =0 = 1] = 1020 =

05. Note that we have computed the counterfactual risk under treatment to

be 05 by counting the number of deaths (10) and dividing them by the total

number of individuals (20), which is the same as computing the average of

the counterfactual outcome across all individuals in the population (if you do

not see the equivalence between risk and average for a dichotomous outcome,

please use the data in Table 1.1 to compute the average of  =1).

We are now ready to provide a formal definition of the average causal effect

in the population: an average causal effect of treatment  on outcome 

is present if Pr[ =1 = 1] 6= Pr[ =0 = 1] in the population of interest.

Under this definition, treatment  does not have an average causal effect on

outcome  in our population because both the risk of death under treatment

Pr[ =1 = 1] and the risk of death under no treatment Pr[ =0 = 1] are 05.

That is, it does not matter whether all or none of the individuals receive a

heart transplant: half of them would die in either case. When, like here, the

average causal effect in the population is null, we say that the null hypothesis

of no average causal effect is true. Because the risk equals the average and

because the letter E is usually employed to represent the population average

or mean (also referred to as ‘E’xpectation), we can rewrite the definition of a

non-null average causal effect in the population as E[ =1] 6= E[ =0] so that

the definition applies to both dichotomous and nondichotomous outcomes.

The presence of an “average causal effect of heart transplant ” is defined

by a contrast that involves the two actions “receiving a heart transplant ( =Average causal effect in population:

E[ =1] 6= E[ =0] 1)” and “not receiving a heart transplant ( = 0).” When more than two

actions are possible (i.e., the treatment is not dichotomous), the particular
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Fine Point 1.2

Multiple versions of treatment. Another implicit assumption in our definition of a subject’s counterfactual outcome

under treatment value  is that there is only one version of treatment value  = . For example, we said that Zeus

would die if he received a heart transplant. This statement implicitly assumes that all heart transplants are performed

by the same surgeon using the same procedure and equipment. That is, that there is only one version of the treatment

“heart transplant.” If there were multiple versions of treatment (e.g., surgeons with different skills), then it is possible

that Zeus would survive if his transplant were performed by Asclepios, and would die if his transplant were performed

by Hygieia. In the presence of multiple versions of treatment, the counterfactual  
 for an individual  is not well

defined because an individual’s outcome depends on the version of treatment . As a consequence “the causal effect

of heart transplant on Zeus’s outcome” is not well defined when there are multiple versions of treatment. Rather, one

needs to refer to “the causal effect of heart transplant on Zeus’s outcome when Asclepios performs the surgery” or

“the causal effect of heart transplant on Zeus’s outcome when Hygieia performs the surgery.” If other components of

treatment (e.g., procedure, place) are also relevant to the outcome, then one may need to refer to “the causal effect of

heart transplant on Zeus’s outcome when Asclepios performs the surgery using his rod at the temple of Kos” because

the causal effect of treatment on Zeus’s outcome may differ for each particular version of treatment. The assumption

of no multiple versions of treatment is included in the “stable-unit-treatment-value assumption (SUTVA)” described

by Rubin (1980). VanderWeele (2009) formalized the weaker assumption of “treatment variation irrelevance,” i.e., the

assumption that multiple versions of treatment  =  may exist but they all result in the same outcome  
 . Unless

otherwise specified, we will assume treatment variation irrelevance throughout this book. See Chapter 3 for an extended

discussion of this issue.

contrast of interest needs to be specified. For example, “the causal effect of

aspirin” is meaningless unless we specify that the contrast of interest is, say,

“taking, while alive, 150 mg of aspirin by mouth (or nasogastric tube if need

be) daily for 5 years” versus “not taking aspirin.” Note that this causal effect is

well defined even if counterfactual outcomes under other interventions are not

well defined or even do not exist (e.g., “taking, while alive, 500 mg of aspirin

by absorption through the skin daily for 5 years”).

Absence of an average causal effect does not imply absence of individual

effects. In fact, Table 1.1 shows that treatment has an individual causal effect

on the outcomes of 12 members (including Zeus) of the population because, for

each of these 12 individuals, the value of their counterfactual outcomes  =1

and  =0 differ. Six of the twelve (including Zeus) were harmed by treatment¡
 =1 −  =0 = 1

¢
; an equal number were helped

¡
 =1 −  =0 = −1¢. This

equality is not an accident: the average causal effect E[ =1]− E[ =0] is al-

ways equal to the average E[ =1 −  =0] of the individual causal effects

 =1 −  =0, as a difference of averages is equal to the average of the dif-

ferences. When there is no causal effect for any individual in the population,

i.e.,  =1 =  =0 for all subjects, we say that the sharp causal null hypothesis

is true. The sharp causal null hypothesis implies the null hypothesis of no

average effect.

As discussed in the next chapters, average causal effects can sometimes be

identified from data, even if individual causal effects cannot. Hereafter we refer

to ‘average causal effects’ simply as ‘causal effects’ and the null hypothesis of

no average effect as the causal null hypothesis. We next describe different

measures of the magnitude of a causal effect.
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Technical Point 1.1

Causal effects in the population. Let E[ ] be the mean counterfactual outcome had all subjects in the population

received treatment level . For discrete outcomes, the mean or expected value E[ ] is defined as the weighted sumP
   () over all possible values  of the random variable  , where   (·) is the probability mass function of  ,

i.e.,   () = Pr[  = ]. For dichotomous outcomes, E[ ] = Pr[  = 1]. For continuous outcomes, the expected

value E[ ] is defined as the integral
R
  ()  over all possible values  of the random variable  , where   (·)

is the probability density function of  . A common representation of the expected value that applies to both discrete

and continuous outcomes is E[ ] =
R
  (), where   (·) is the cumulative distribution function (cdf) of the

random variable  . We say that there is a non-null average causal effect in the population if E[ ] 6= E[ 0 ] for any

two values  and 0.
The average causal effect, defined by a contrast of means of counterfactual outcomes, is the most commonly

used population causal effect. However, a population causal effect may also be defined as a contrast of, say, medians,

variances, hazards, or cdfs of counterfactual outcomes. In general, a causal effect can be defined as a contrast of any
functional of the distributions of counterfactual outcomes under different actions or treatment values. The causal null

hypothesis refers to the particular contrast of functionals (mean, median, variance, hazard, cdf, ...) used to define the
causal effect.

1.3 Measures of causal effect

We have seen that the treatment ‘heart transplant’  does not have a causal

effect on the outcome ‘death’  in our population of 20 family members of

Zeus. The causal null hypothesis holds because the two counterfactual risks

Pr[ =1 = 1] and Pr[ =0 = 1] are equal to 05. There are equivalent ways

of representing the causal null. For example, we could say that the risk

Pr[ =1 = 1] minus the risk Pr
£
 =0 = 1

¤
is zero (05 − 05 = 0) or that

the risk Pr[ =1 = 1] divided by the risk Pr
£
 =0 = 1

¤
is one (0505 = 1).

That is, we can represent the causal null by

(i) Pr[ =1 = 1]− Pr[ =0 = 1] = 0

(ii)
Pr[ =1 = 1]

Pr[ =0 = 1]
= 1

(iii)
Pr[ =1 = 1]Pr[ =1 = 0]

Pr[ =0 = 1]Pr[ =0 = 0]
= 1

where the left-hand side of the equalities (i), (ii), and (iii) is the causal risk

difference, risk ratio, and odds ratio, respectively.

Suppose now that another treatment , cigarette smoking, has a causal

effect on another outcome  , lung cancer, in our population. The causal null

hypothesis does not hold: Pr[ =1 = 1] and Pr[ =0 = 1] are not equal. In

this setting, the causal risk difference, risk ratio, and odds ratio are not 0, 1,

and 1, respectively. Rather, these causal parameters quantify the strength of

the same causal effect on different scales. Because the causal risk difference,

risk ratio, and odds ratio (and other summaries) measure the causal effect, we

refer to them as effect measures.

Each effect measure may be used for different purposes. For example,

imagine a large population in which 3 in a million individuals would develop the

outcome if treated, and 1 in a million individuals would develop the outcome if

untreated. The causal risk ratio is 3, and the causal risk difference is 0000002.

The causal risk ratio (multiplicative scale) is used to compute how many times
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Fine Point 1.3

Number needed to treat. Consider a population of 100 million patients in which 20 million would die within five years

if treated ( = 1), and 30 million would die within five years if untreated ( = 0). This information can be summarized

in several equivalent ways:

• the causal risk difference is Pr[ =1 = 1]− Pr[ =0 = 1] = 02− 03 = −01
• if one treats the 100 million patients, there will be 10 million fewer deaths than if one does not treat those 100
million patients.

• one needs to treat 100 million patients to save 10 million lives
• on average, one needs to treat 10 patients to save 1 life

We refer to the average number of individuals that need to receive treatment  = 1 to reduce the number of cases

 = 1 by one as the number needed to treat (NNT). In our example the NNT is equal to 10. For treatments that

reduce the average number of cases (i.e., the causal risk difference is negative), the NNT is equal to the reciprocal of

the absolute value of the causal risk difference:

 =
−1

Pr[ =1 = 1]− Pr[ =0 = 1]

Like the causal risk difference, the NNT applies to the population and time interval on which it is based. For treatments

that increase the average number of cases (i.e., the causal risk difference is positive), one can symmetrically define the

number needed to harm. The NNT was introduced by Laupacis, Sackett, and Roberts (1988). For a discussion of the

relative advantages and disadvantages of the NNT as an effect measure, see Grieve (2003).

treatment, relative to no treatment, increases the disease risk. The causal risk

difference (additive scale) is used to compute the absolute number of cases of

the disease attributable to the treatment. The use of either the multiplicative

or additive scale will depend on the goal of the inference.

1.4 Random variability

At this point you could complain that our procedure to compute effect measures

is somewhat implausible. Not only did we ignore the well known fact that the

immortal Zeus cannot die, but–more to the point–our population in Table

1.1 had only 20 individuals. The populations of interest are typically much

larger.

In our tiny population, we collected information from all the subjects. In

practice, investigators only collect information on a sample of the population of

interest. Even if the counterfactual outcomes of all study subjects were known,

working with samples prevents one from obtaining the exact proportion of

subjects in the population who had the outcome under treatment value , e.g.,

the probability of death under no treatment Pr[ =0 = 1] cannot be directly

computed. One can only estimate this probability.

Consider the subjects in Table 1.1. We have previously viewed them as

forming a twenty-subject population. Suppose we view them as a random sam-1st source of random error:

Sampling variability ple from a much larger, near-infinite super-population (e.g., all immortals). We

denote the proportion of subjects in the sample who would have died if unex-
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posed as cPr[ =0 = 1] = 1020 = 050. The sample proportion cPr[ =0 = 1]

does not have to be exactly equal to the proportion of subjects who would have

died if the entire super-population had been unexposed, Pr[ =0 = 1]. For ex-

ample, suppose Pr[ =0 = 1] = 057 in the population but, because of random

error due to sampling variability, cPr[ =0 = 1] = 05 in our particular sample.

We use the sample proportion cPr[  = 1] to estimate the super-population

probability Pr[  = 1] under treatment value . The “hat” over Pr indicates

that the sample proportion cPr[  = 1] is an estimator of the corresponding

population quantity Pr[  = 1]. We say that cPr[  = 1] is a consistent esti-

mator of Pr[  = 1] because the larger the number of subjects in the sample,An estimator ̂ of  is consistent

if, with probability approaching 1,

the difference ̂− approaches zero
as the sample size increases towards

infinity.

the smaller the difference between cPr[  = 1] and Pr[  = 1] is expected to

be. This occurs because the error due to sampling variability is random and

thus obeys the law of large numbers.

Because the super-population probabilities Pr[  = 1] cannot be computed,

only consistently estimated by the sample proportions cPr[  = 1], one cannotCaution: the term ‘consistency’

when applied to estimators has a

different meaning from that which

it has when applied to counterfac-

tual outcomes.

conclude with certainty that there is, or there is not, a causal effect. Rather, a

statistical procedure must be used to test the causal null hypothesis Pr[ =1 =

1] = Pr[ =0 = 1]; the procedure quantifies the chance that the differencecPr[ =1 = 1] and cPr[ =0 = 1] is wholly due to sampling variability.

So far we have only considered sampling variability as a source of random

error. But there may be another source of random variability: perhaps the

values of an individual’s counterfactual outcomes are not fixed in advance. We2nd source of random error:

Nondeterministic counterfactuals have defined the counterfactual outcome   as the subject’s outcome had he

received treatment value . For example, in our first vignette, Zeus would have

died if treated and would have survived if untreated. As defined, the values of

the counterfactual outcomes are fixed or deterministic for each subject, e.g.,

 =1 = 1 and  =0 = 0 for Zeus. In other words, Zeus has a 100% chanceTable 1.2

 

Rheia 0 0

Kronos 0 1

Demeter 0 0

Hades 0 0

Hestia 1 0

Poseidon 1 0

Hera 1 0

Zeus 1 1

Artemis 0 1

Apollo 0 1

Leto 0 0

Ares 1 1

Athena 1 1

Hephaestus 1 1

Aphrodite 1 1

Cyclope 1 1

Persephone 1 1

Hermes 1 0

Hebe 1 0

Dionysus 1 0

of dying if treated and a 0% chance of dying if untreated. However, we could

imagine another scenario in which Zeus has a 90% chance of dying if treated,

and a 10% chance of dying if untreated. In this scenario, the counterfactual

outcomes are stochastic or nondeterministic because Zeus’s probabilities of dy-

ing under treatment (09) and under no treatment (01) are neither zero or one.

The values of  =1 and  =0 shown in Table 1.1 would be possible realiza-

tions of “random flips of mortality coins” with these probabilities. Further,

one would expect that these probabilities vary across subjects because not all

subjects are equally susceptible to develop the outcome. Quantum mechanics,

in contrast to classical mechanics, holds that outcomes are inherently nonde-

terministic. That is, if the quantum mechanical probability of Zeus dying is

90%, the theory holds that no matter how much data we collect about Zeus, the

uncertainty about whether Zeus will actually develop the outcome if treated is

irreducible and statistical methods are needed to quantify it.

Thus statistics is necessary in causal inference to quantify random error

from sampling variability, nondeterministic counterfactuals, or both. However,

for pedagogic reasons, we will continue to largely ignore statistical issues until

Chapter 10. Specifically, we will assume that counterfactual outcomes are

deterministic and that we have recorded data on every subject in a very large

(perhaps hypothetical) super-population. This is equivalent to viewing our

population of 20 subjects as a population of 20 billion subjects in which 1

billion subjects are identical to Zeus, 1 billion subjects are identical to Hera,

and so on. Hence, until Chapter 10, we will carry out our computations with

Olympian certainty.
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Technical Point 1.2

Nondeterministic counterfactuals. For nondeterministic counterfactual outcomes, the mean outcome under treatment

value , E[ ], equals the weighted sum
P


  () over all possible values  of the random variable  , where the

probability mass function   (·) = E [  (·)], and   () is a random probability of having outcome  =  under

treatment level . In the example described in the text,  =1 (1) = 09 for Zeus. (For continuous outcomes, the

weighted sum is replaced by an integral.)

More generally, a nondeterministic definition of counterfactual outcome does not attach some particular value of the

random variable   to each subject, but rather a statistical distribution Θ  (·) of  . The nondeterministic definition

of causal effect is a generalization of the deterministic definition in which Θ  (·) is a random cdf that may take values
between 0 and 1. The average counterfactual outcome in the population E[ ] equals E {E [  | Θ  (·)]}. Therefore,
E[ ] = E

£R
 Θ  ()

¤
=
R
 E[Θ  ()] =

R
   (), because we define   (·) = E

£
Θ 


(·)¤. Although

the possibility of nondeterministic counterfactual outcomes implies no changes in our definitions of population causal

effect and of effect measures, nondeterministic counterfactual outcomes introduce random variability. This additional

variability has implications for the computation of confidence intervals for the effect measures (Robins 1988), as discussed

in Chapter 10.

1.5 Causation versus association

Obviously, the data available from actual studies look different from those

shown in Table 1.1. For example, we would not usually expect to learn Zeus’s

outcome if treated  =1 and also Zeus’s outcome if untreated  =0. In the

real world, we only get to observe one of those outcomes because Zeus is either

treated or untreated. We referred to the observed outcome as  . Thus, for

each individual, we know the observed treatment level  and the outcome 

as in Table 1.2.

The data in Table 1.2 can be used to compute the proportion of subjects

that developed the outcome  among those subjects in the population that

happened to receive treatment value . For example, in Table 1.2, 7 subjects

died ( = 1) among the 13 individuals that were treated ( = 1). Thus the

risk of death in the treated, Pr[ = 1| = 1], was 713. In general, we define
the conditional probability Pr[ = 1| = ] as the proportion of subjects that

developed the outcome  among those subjects in the population of interest

that happened to receive treatment value .

When the proportion of subjects who develop the outcome in the treated

Pr[ = 1| = 1] equals the proportion of subjects who develop the outcome

in the untreated Pr[ = 1| = 0], we say that treatment  and outcome 

are independent, that  is not associated with  , or that  does not predict

 . Independence is represented by 
`

–or, equivalently, 
`

– which isDawid (1979) introduced the sym-

bol q to denote independence read as  and  are independent. Some equivalent definitions of independence

are

(i) Pr[ = 1| = 1]− Pr[ = 1| = 0] = 0

(ii)
Pr[ = 1| = 1]
Pr[ = 1| = 0] = 1

(iii)
Pr[ = 1| = 1]Pr[ = 0| = 1]
Pr[ = 1| = 0]Pr[ = 0| = 0] = 1

where the left-hand side of the inequalities (i), (ii), and (iii) is the associational

risk difference, risk ratio, and odds ratio, respectively.
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We say that treatment  and outcome  are dependent or associated when

Pr[ = 1| = 1] 6= Pr[ = 1| = 0]. In our population, treatment andFor a continuous outcome  we

define mean independence between

treatment and outcome as:

E[ | = 1] = E[ | = 0]
Independence and mean indepen-

dence are the same concept for di-

chotomous outcomes.

outcome are indeed associated because Pr[ = 1| = 1] = 713 and Pr[ =

1| = 0] = 37. The associational risk difference, risk ratio, and odds ratio

(and other measures) quantify the strength of the association when it exists.

They measure the association on different scales, and we refer to them as

association measures. These measures are also affected by random variability.

However, until Chapter 10, we will disregard statistical issues by assuming that

the population in Table 1.2 is extremely large.

For dichotomous outcomes, the risk equals the average in the population,

and we can therefore rewrite the definition of association in the population as

E [ | = 1] 6= E [ | = 0]. For continuous outcomes  , we can also define
association as E [ | = 1] 6= E [ | = 0]. Under this definition, association is
essentially the same as the statistical concept of correlation between  and a

continuous  .

In our population of 20 individuals, we found (i) no causal effect after com-

paring the risk of death if all 20 individuals had been treated with the risk of

death if all 20 individuals had been untreated, and (ii) an association after com-

paring the risk of death in the 13 individuals who happened to be treated with

the risk of death in the 7 individuals who happened to be untreated. Figure

1.1 depicts the causation-association difference. The population (represented

by a diamond) is divided into a white area (the treated) and a smaller grey

area (the untreated). The definition of causation implies a contrast between

the whole white diamond (all subjects treated) and the whole grey diamond

(all subjects untreated), whereas association implies a contrast between the

white (the treated) and the grey (the untreated) areas of the original diamond.

Population of interest

Treated Untreated

Causation Association

vs.vs.

EYa1 EYa0 EY|A  1 EY|A  0

Figure 1.1

We can use the notation we have developed thus far to formalize the dis-

tinction between causation and association. The risk Pr[ = 1| = ] is a

conditional probability: the risk of  in the subset of the population that

meet the condition ‘having actually received treatment value ’ (i.e.,  = ).

In contrast the risk Pr[  = 1] is an unconditional–also known as marginal–

probability, the risk of   in the entire population. Therefore, association is

defined by a different risk in two disjoint subsets of the population determined
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by the subjects’ actual treatment value ( = 1 or  = 0), whereas causa-

tion is defined by a different risk in the entire population under two different

treatment values ( = 1 or  = 0). Throughout this book we often use theThe difference between association

and causation is critical. Suppose

the causal risk ratio of 5-year mor-

tality is 05 for aspirin vs. no as-

pirin, and the corresponding asso-

ciational risk ratio is 15. After a

physician learns these results, she

decides to withhold aspirin from her

patients because those treated with

aspirin have a greater risk of dying

compared with the untreated. The

doctor will be sued for malpractice.

redundant expression ‘causal effect’ to avoid confusions with a common use of

‘effect’ meaning simply association.

These radically different definitions explain the well-known adage “asso-

ciation is not causation.” In our population, there was association because

the mortality risk in the treated (713) was greater than that in the untreated

(37). However, there was no causation because the risk if everybody had been

treated (1020) was the same as the risk if everybody had been untreated. This

discrepancy between causation and association would not be surprising if those

who received heart transplants were, on average, sicker than those who did not

receive a transplant. In Chapter 7 we refer to this discrepancy as confounding.

Causal inference requires data like the hypothetical data in Table 1.1, but

all we can ever expect to have is real world data like those in Table 1.2. The

question is then under which conditions real world data can be used for causal

inference. The next chapter provides one answer: conduct a randomized ex-

periment.



Chapter 2
RANDOMIZED EXPERIMENTS

Does your looking up at the sky make other pedestrians look up too? This question has the main components

of any causal question: we want to know whether certain action (your looking up) affects certain outcome (other

people’s looking up) in certain population (say, residents of Madrid in 2011). Suppose we challenge you to design

a scientific study to answer this question. “Not much of a challenge,” you say after some thought, “I can stand on

the sidewalk and flip a coin whenever someone approaches. If heads, I’ll look up intently; if tails, I’ll look straight

ahead with an absentminded expression. I’ll repeat the experiment a few thousand times. If the proportion of

pedestrians who looked up within 10 seconds after I did is greater than the proportion of pedestrians who looked

up when I didn’t, I will conclude that my looking up has a causal effect on other people’s looking up. By the way,

I may hire an assistant to record what people do while I’m looking up.” After conducting this study, you found

that 55% of pedestrians looked up when you looked up but only 1% looked up when you looked straight ahead.

Your solution to our challenge was to conduct a randomized experiment. It was an experiment because the

investigator (you) carried out the action of interest (looking up), and it was randomized because the decision to

act on any study subject (pedestrian) was made by a random device (coin flipping). Not all experiments are

randomized. For example, you could have looked up when a man approached and looked straight ahead when a

woman did. Then the assignment of the action would have followed a deterministic rule (up for man, straight for

woman) rather than a random mechanism. However, your findings would not have been nearly as convincing if you

had conducted a non randomized experiment. If your action had been determined by the pedestrian’s sex, critics

could argue that the “looking up” behavior of men and women differs (women may not be as easily influenced by

your actions) and thus your study compared essentially “noncomparable” groups of people. This chapter describes

why randomization results in convincing causal inferences.

2.1 Randomization

In a real world study we will not know both of Zeus’s potential outcomes  =1

under treatment and  =0 under no treatment. Rather, we can only know

his observed outcome  under the treatment value  that he happened to

receive. Table 2.1 summarizes the available information for our population

of 20 individuals. Only one of the two counterfactual outcomes is known for

each individual: the one corresponding to the treatment level that he actually

received. The data are missing for the other counterfactual outcomes. As weNeyman (1923) applied counterfac-

tual theory to the estimation of

causal effects via randomized ex-

periments

discussed in the previous chapter, this missing data creates a problem because

it appears that we need the value of both counterfactual outcomes to compute

effect measures. The data in Table 2.1 are only good to compute association

measures.

Randomized experiments, like any other real world study, generate data with

missing values of the counterfactual outcomes as shown in Table 2.1. However,

randomization ensures that those missing values occurred by chance. As a

result, effect measures can be computed –or, more rigorously, consistently

estimated–in randomized experiments despite the missing data. Let us be

more precise.

Suppose that the population represented by a diamond in Figure 1.1 was

near-infinite, and that we flipped a coin for each subject in such population. We
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assigned the subject to the white group if the coin turned tails, and to the grey

group if it turned heads. Note this was not a fair coin because the probabilityTable 2.1
   0  1

Rheia 0 0 0 ?

Kronos 0 1 1 ?

Demeter 0 0 0 ?

Hades 0 0 0 ?

Hestia 1 0 ? 0

Poseidon 1 0 ? 0

Hera 1 0 ? 0

Zeus 1 1 ? 1

Artemis 0 1 1 ?

Apollo 0 1 1 ?

Leto 0 0 0 ?

Ares 1 1 ? 1

Athena 1 1 ? 1

Hephaestus 1 1 ? 1

Aphrodite 1 1 ? 1

Cyclope 1 1 ? 1

Persephone 1 1 ? 1

Hermes 1 0 ? 0

Hebe 1 0 ? 0

Dionysus 1 0 ? 0

of heads was less than 50%–fewer people ended up in the grey group than

in the white group. Next we asked our research assistants to administer the

treatment of interest ( = 1), to subjects in the white group and a placebo

( = 0) to those in the grey group. Five days later, at the end of the study,

we computed the mortality risks in each group, Pr[ = 1| = 1] = 03 and

Pr[ = 1| = 0] = 06. The associational risk ratio was 0306 = 05 and the
associational risk difference was 03 − 06 = −03. We will assume that this
was an ideal randomized experiment in all other respects: no loss to follow-

up, full adherence to the assigned treatment over the duration of the study,

a single version of treatment, and double blind assignment (see Chapter 9).

Ideal randomized experiments are unrealistic but useful to introduce some key

concepts for causal inference. Later in this book we consider more realistic

randomized experiments.

Now imagine what would have happened if the research assistants had

misinterpreted our instructions and had treated the grey group rather than

the white group. Say we learned of the misunderstanding after the study

finished. How does this reversal of treatment status affect our conclusions?

Not at all. We would still find that the risk in the treated (now the grey group)

Pr[ = 1| = 1] is 03 and the risk in the untreated (now the white group)

Pr[ = 1| = 0] is 06. The association measure would not change. Because
subjects were randomly assigned to white and grey groups, the proportion

of deaths among the exposed, Pr[ = 1| = 1] is expected to be the same

whether subjects in the white group received the treatment and subjects in

the grey group received placebo, or vice versa. When group membership is

randomized, which particular group received the treatment is irrelevant for

the value of Pr[ = 1| = 1]. The same reasoning applies to Pr[ = 1| = 0],
of course. Formally, we say that groups are exchangeable.

Exchangeability means that the risk of death in the white group would have

been the same as the risk of death in the grey group had subjects in the white

group received the treatment given to those in the grey group. That is, the risk

under the potential treatment value  among the treated, Pr[  = 1| = 1],

equals the risk under the potential treatment value  among the untreated,

Pr[  = 1| = 0], for both  = 0 and  = 1. An obvious consequence of these

(conditional) risks being equal in all subsets defined by treatment status in the

population is that they must be equal to the (marginal) risk under treatment

value  in the whole population: Pr[  = 1| = 1] = Pr[  = 1| = 0] =

Pr[  = 1]. Because the counterfactual risk under treatment value  is the

same in both groups  = 1 and  = 0, we say that the actual treatment 

does not predict the counterfactual outcome  . Equivalently, exchangeability

means that the counterfactual outcome and the actual treatment are indepen-

dent, or  q, for all values . Randomization is so highly valued because itExchangeability:

 
`

 for all  is expected to produce exchangeability. When the treated and the untreated

are exchangeable, we sometimes say that treatment is exogenous, and thus

exogeneity is commonly used as a synonym for exchangeability.

The previous paragraph argues that, in the presence of exchangeability, the

counterfactual risk under treatment in the white part of the population would

equal the counterfactual risk under treatment in the entire population. But the

risk under treatment in the white group is not counterfactual at all because the

white group was actually treated! Therefore our ideal randomized experiment

allows us to compute the counterfactual risk under treatment in the population

Pr[ =1 = 1] because it is equal to the risk in the treated Pr[ = 1| = 1] =
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Technical Point 2.1

Full exchangeability and mean exchangeability. Randomization makes the   jointly independent of  which implies,

but is not implied by, exchangeability  q for each . Formally, let A = { 0 00 } denote the set of all treatment
values present in the population, and  A =

n
   0   00  

o
the set of all counterfactual outcomes. Randomization

makes  A q. We refer to this joint independence as full exchangeability. For a dichotomous treatment, A = {0 1}
and full exchangeability is

¡
 =1  =0

¢q.

For a dichotomous outcome and treatment, exchangeability   q  can also be written as Pr [  = 1| = 1] =
Pr [  = 1| = 0] or, equivalently, as E[ | = 1] = E[ | = 0] for all . We refer to the last equality as mean

exchangeability. For a continuous outcome, exchangeability  q implies mean exchangeability E[ | = 0] = E[ ],

but mean exchangeability does not imply exchangeability because distributional parameters other than the mean (e.g.,

variance) may not be independent of treatment.

Neither full exchangeability  A q nor exchangeability   q are required to prove that E[ ] = E[ | = ].

Mean exchangeability is sufficient. As sketched in the main text, the proof has two steps. First, E[ | = ] =

E[ | = ] by consistency. Second, E[ | = ] = E[ ] by mean exchangeability. Because exchangeability and

mean exchangeability are identical concepts for the dichotomous outcomes used in this chapter, we use the shorter term

“exchangeability” throughout.

03. That is, the risk in the treated (the white part of the diamond) is the

same as the risk if everybody had been treated (and thus the diamond had

been entirely white). Of course, the same rationale applies to the untreated:

the counterfactual risk under no treatment in the population Pr[ =0 = 1]

equals the risk in the untreated Pr[ = 1| = 0] = 06. The causal risk ratio
is 05 and the causal risk difference is −03. In ideal randomized experiments,
association is causation.

Before proceeding, please make sure you understand the difference between

 q and  q. Exchangeability  q is defined as independence between
the counterfactual outcome and the observed treatment. Again, this means

that the treated and the untreated would have experienced the same risk of

death if they had received the same treatment level (either  = 0 or  = 1). ButCaution:

 
`

 is different from 
`

 independence between the counterfactual outcome and the observed treatment

  q  does not imply independence between the observed outcome and the

observed treatment  q. For example, in a randomized experiment in which

exchangeability   q  holds and the treatment has a causal effect on the

outcome, then  q  does not hold because the treatment is associated with

the observed outcome.

Does exchangeability hold in our heart transplant study of Table 2.1? To

answer this question we would need to check whether   q  holds for  = 0

and for  = 1. Take  = 0 first. Suppose the counterfactual data in Table 1.1

are available to us. We can then compute the risk of death under no treatment

Pr[ =0 = 1| = 1] = 713 in the 13 treated subjects and the risk of death

under no treatment Pr[ =0 = 1| = 0] = 37 in the 7 untreated subjects.

Since the risk of death under no treatment is greater in the treated than in

the untreated subjects, i.e., 713  37, we conclude that the treated have a

worse prognosis than the untreated, that is, that the treated and the untreated

are not exchangeable. Mathematically, we have proven that exchangeability

 q does not hold for  = 0. (You can check that it does not hold for  = 1

either.) Thus the answer to the question that opened this paragraph is ‘No’.

But only the observed data in Table 2.1, not the counterfactual data in

Table 1.1, are available in the real world. Since Table 2.1 is insufficient to
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Fine Point 2.1

Crossover randomized experiments. Individual (also known as subject-specific) causal effects can sometimes be

identified via randomized experiments. For example, suppose we want to estimate the causal effect of lightning bolt

use  on Zeus’s blood pressure  . We define the counterfactual outcomes  =1 and  =0 to be 1 if Zeus’s blood

pressure is temporarily elevated after calling or not calling a lightning strike, respectively. Suppose we convinced Zeus

to use his lightning bolt only when suggested by us. Yesterday morning we flipped coin and obtained heads. We then

asked Zeus to call a lightning strike ( = 1). His blood pressure was elevated after doing so. This morning we flipped

a coin and obtained tails. We then asked Zeus to refrain from using his lightning bolt ( = 0). His blood pressure did

not increase. We have conducted a crossover randomized experiment in which an individual’s outcome is sequentially

observed under two treatment values. One might argue that, because we have observed both of Zeus’s counterfactual

outcomes  =1 = 1 and  =0 = 0, using a lightning bolt has a causal effect on Zeus’s blood pressure. We may repeat

this procedure daily for some months to reduce random variability.

In crossover randomized experiments, an individual is observed during two or more periods. The individual receives

a different treatment value in each period and the order of treatment values is randomly assigned. The main purported

advantage of the crossover design is that, unlike in non crossover designs, for each treated subject there is a perfectly

exchangeable untreated subject–him or herself. A direct contrast of a subject’s outcomes under different treatment

values allows the identification of individual effects under the following conditions: 1) treatment is of short duration

and its effects do not carry-over to the next period, and 2) the outcome is a condition of abrupt onset that completely

resolves by the next period. Therefore crossover randomized experiments cannot be used to study the effect of heart

transplant, an irreversible action, on death, an irreversible outcome.

To eliminate random variability, one needs to randomly assign treatment at many different periods. If the individual

causal effect changes with time, we obtain the average of the individual time-specific causal effects.

compute counterfactual risks like the risk under no treatment in the treated

Pr[ =0 = 1| = 1], we are generally unable to determine whether exchange-
ability holds in our study. However, suppose for a moment, that we actually

had access to Table 1.1 and determined that exchangeability does not hold

in our heart transplant study. Can we then conclude that our study is not

a randomized experiment? No, for two reasons. First, as you are probably

already thinking, a twenty-subject study is too small to reach definite con-

clusions. Random fluctuations arising from sampling variability could explain

almost anything. We will discuss random variability in Chapter 10. Until

then, let us assume that each subject in our population represents 1 billion

subjects that are identical to him or her. Second, it is still possible that a

study is a randomized experiment even if exchangeability does not hold in in-

finite samples. However, unlike the type of randomized experiment described

in this section, it would need to be a randomized experiment in which investi-

gators use more than one coin to randomly assign treatment. The next section

describes randomized experiments with more than one coin.

2.2 Conditional randomization

Table 2.2 shows the data from our heart transplant randomized study. Besides

data on treatment  (1 if the subject received a transplant, 0 otherwise) and

outcome  (1 if the subject died, 0 otherwise), Table 2.2 also contains data on

the prognosis factor  (1 if the subject was in critical condition, 0 otherwise),

which we measured before treatment was assigned. We now consider two mu-
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tually exclusive study designs and discuss whether the data in Table 2.2 could

have arisen from either of them.

In design 1 we would have randomly selected 65% of the individuals in the

population and transplanted a new heart to each of the selected individuals.

That would explain why 13 out of 20 subjects were treated. In design 2 weTable 2.2
  

Rheia 0 0 0

Kronos 0 0 1

Demeter 0 0 0

Hades 0 0 0

Hestia 0 1 0

Poseidon 0 1 0

Hera 0 1 0

Zeus 0 1 1

Artemis 1 0 1

Apollo 1 0 1

Leto 1 0 0

Ares 1 1 1

Athena 1 1 1

Hephaestus 1 1 1

Aphrodite 1 1 1

Cyclope 1 1 1

Persephone 1 1 1

Hermes 1 1 0

Hebe 1 1 0

Dionysus 1 1 0

would have classified all individuals as being in either critical ( = 1) or

noncritical ( = 0) condition. Then we would have randomly selected 75% of

the individuals in critical condition and 50% of those in noncritical condition,

and transplanted a new heart to each of the selected individuals. That would

explain why 9 out of 12 subjects in critical condition, and 4 out of 8 subjects

in non critical condition, were treated.

Both designs are randomized experiments. Design 1 is precisely the type

of randomized experiment described in Section 2.1. Under this design, we

would use a single coin to assign treatment to all subjects (e.g., treated if tails,

untreated if heads): a loaded coin with probability 065 of turning tails, thus

resulting in 65% of the subjects receiving treatment. Under design 2 we would

not use a single coin for all subjects. Rather, we would use a coin with a 075

chance of turning tails for subjects in critical condition, and another coin with

a 050 chance of turning tails for subjects in non critical condition. We refer to

design 2 experiments as conditionally randomized experiments because we use

several randomization probabilities that depend (are conditional) on the values

of the variable . We refer to design 1 experiments as marginally randomized

experiments because we use a single unconditional (marginal) randomization

probability that is common to all subjects.

As discussed in the previous section, a marginally randomized experiment

is expected to result in exchangeability of the treated and the untreated:

Pr[  = 1| = 1] = Pr[  = 1| = 0] or  
`

. In contrast, a con-

ditionally randomized experiment will not generally result in exchangeability

of the treated and the untreated because, by design, each group may have a

different proportion of subjects with bad prognosis.

Thus the data in Table 2.2 could not have arisen from a marginally random-

ized experiment because 69% treated versus 43% untreated individuals were

in critical condition. This imbalance indicates that the risk of death in the

treated, had they remained untreated, would have been higher than the risk of

death in the untreated. In other words, treatment  predicts the counterfactual

risk of death under no treatment, and exchangeability  
`

 does not hold.

Since our study was a randomized experiment, you can now safely conclude

that the study was a randomized experiment with randomization conditional

on .

Our conditionally randomized experiment is simply the combination of two

separate marginally randomized experiments: one conducted in the subset of

individuals in critical condition ( = 1), the other in the subset of individuals

in non critical condition ( = 0). Consider first the randomized experiment

being conducted in the subset of individuals in critical condition. In this subset,

the treated and the untreated are exchangeable. Formally, the counterfactual

mortality risk under each treatment value  is the same among the treated

and the untreated given that they all were in critical condition at the time of

treatment assignment. That is, Pr[  = 1| = 1  = 1] = Pr[  = 1| =

0  = 1] or   and  are independent given  = 1, which is written as

 
`

| = 1 for all . Similarly, randomization also ensures that the treated
and the untreated are exchangeable in the subset of individuals that were in

noncritical condition, that is,  
`

| = 0. When  
`

| =  holds for all

values  we simply write  
`

|. Thus, although conditional randomization
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does not guarantee unconditional (or marginal) exchangeability  
`

, itConditional exchangeability:

 
`

| for all  guarantees conditional exchangeability  
`

| within levels of the variable .
In summary, randomization produces either marginal exchangeability (design

1) or conditional exchangeability (design 2).

We know how to compute effect measures under marginal exchangeabil-

ity. In marginally randomized experiments the causal risk ratio Pr[ =1 =

1]Pr[ =0 = 1] equals the associational risk ratio Pr[ = 1| = 1]Pr[ =

1| = 0] because exchangeability ensures that the counterfactual risk under

treatment level , Pr[  = 1], equals the observed risk among those who re-

ceived treatment level , Pr[ = 1| = ]. Thus, if the data in Table 2.2 hadIn a marginally randomized exper-

iment, the values of the counter-

factual outcomes are missing com-

pletely at random (MCAR). In

a conditionally randomized experi-

ment, the values of the counterfac-

tual outcomes are not MCAR, but

they are missing at random (MAR)

conditional on the covariate . The

terms MCAR, MAR, and NMAR

(not missing at random) were in-

troduced by Rubin (1976).

been collected during a marginally randomized experiment, the causal risk

ratio would be readily calculated from the data on  and  as
713

37
= 126.

The question is how to compute the causal risk ratio in a conditionally ran-

domized experiment. Remember that a conditionally randomized experiment

is simply the combination of two (or more) separate marginally randomized

experiments conducted in different subsets of the population, e.g.,  = 1 and

 = 0. Thus we have two options.

First, we can compute the average causal effect in each of these subsets of

strata of the population. Because association is causation within each subset,

the stratum-specific causal risk ratio Pr[ =1 = 1| = 1]Pr[ =0 = 1| = 1]
among people in critical condition is equal to the stratum-specific associational

risk ratio Pr[ = 1| = 1  = 1]Pr[ = 1| = 1  = 0] among people in

critical condition. And analogously for  = 0. We refer to this method to

compute stratum-specific causal effects as stratification. Note that the stratum-

specific causal risk ratio in the subset  = 1 may differ from the causal risk

ratio in  = 0. In that case, we say that the effect of treatment is modified byStratification and effect modifica-

tion are discussed in more detail in

Chapter 4.

, or that there is effect modification by .

Second, we can compute the average causal effect Pr[ =1 = 1]Pr[ =0 =

1] in the entire population, as we have been doing so far. Whether our princi-

pal interest lies in the stratum-specific average causal effects versus the average

causal effect in the entire population depends on practical and theoretical con-

siderations discussed in detail in Chapter 4 and in Part III. As one example,

you may be interested in the average causal effect in the entire population,

rather than in the stratum-specific average causal effects, if you do not expect

to have information on  for future subjects (e.g., the variable  is expensive

to measure) and thus your decision to treat cannot depend on the value of .

Until Chapter 4, we will restrict our attention to the average causal effect in

the entire population. The next two sections describe how to use data from

conditionally randomized trials to compute the average causal effect in the

entire population.

2.3 Standardization

Our heart transplant study is a conditionally randomized experiment: the in-

vestigators used a random procedure to assign hearts ( = 1) with probability

50% to the 8 individuals in noncritical condition ( = 0), and with probability

75% to the 12 individuals in critical condition ( = 1). First, let us focus on

the 8 individuals–remember, they are really the average representatives of 8

billion individuals–in noncritical condition. In this group, the risk of death

among the treated is Pr[ = 1| = 0  = 1] = 1
4
, and the risk of death
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among the untreated is Pr[ = 1| = 0  = 0] = 1
4
. Because treatment

was randomly assigned to subjects in the group  = 0, i.e.,  
`

| = 0,

the observed risks are equal to the counterfactual risks. That is, in the group

 = 0, the risk in the treated equals the risk if everybody had been treated,

Pr[ = 1| = 0  = 1] = Pr[ =1 = 1| = 0], and the risk in the untreated
equals the risk if everybody had been untreated, Pr[ = 1| = 0  = 0] =

Pr[ =0 = 1| = 0]. Following an analogous reasoning, we can conclude that
the observed risks equal the counterfactual risks in the group of 12 individuals

in critical condition, i.e., Pr[ = 1| = 1  = 1] = Pr[ =1 = 1| = 1] = 2
3
,

and Pr[ = 1| = 1  = 0] = Pr[ =0 = 1| = 1] = 2
3
.

Suppose now our goal is to compute the causal risk ratio Pr[ =1 =

1]Pr[ =0 = 1]. The numerator of the causal risk ratio is the risk if all

20 subjects in the population had been treated. From the previous paragraph,

we know that the risk if all subjects had been treated is 1
4
in the 8 subjects

with  = 0 and 2
3
in the 12 subjects with  = 1. Therefore the risk if all 20

subjects in the population had been treated will be a weighted average of 1
4

and 2
3
in which each group receives a weight proportional to its size. Since

40% of the subjects (8) are in group  = 0 and 60% of the subjects (12) and

in group  = 1, the weighted average is 1
4
× 04 + 2

3
× 06 = 05. Thus the

risk if everybody had been treated Pr[ =1 = 1] is equal to 05. By following

the same reasoning we can calculate that the risk if nobody had been treated

Pr[ =0 = 1] is also equal to 05. The causal risk ratio is then 0505 = 1.

More formally, the marginal counterfactual risk Pr[  = 1] is the weighted

average of the stratum-specific risks Pr[  = 1| = 0] and Pr[  = 1| = 1]
with weights equal to the proportion of individuals in the population with  = 0

and  = 1, respectively. That is, Pr[  = 1] = Pr[  = 1| = 0]Pr [ = 0] +
Pr[  = 1| = 1]Pr [ = 1]. Or, using a more compact notation, Pr[  = 1] =P

 Pr[
 = 1| = ] Pr [ = ], where

P
 means sum over all values  that

occur in the population. By conditional exchangeability, we can replace the

counterfactual risk Pr[  = 1| = ] by the observed risk Pr[ = 1| =   =

] in the expression above. That is, Pr[  = 1] =
P

 Pr[ = 1| =   =

] Pr [ = ]. The left-hand side of this equality is an unobserved counterfactual

risk whereas the right-hand side includes observed quantities only, which can

be computed using data on , , and  .

The method described above is known in epidemiology, demography, and

other disciplines as standardization. For example, the numerator
P

 Pr[ =Standardized meanP
 E[ | =   = ]

×Pr [ = ]

1| =   = 1]Pr [ = ] of the causal risk ratio is the standardized risk in the

treated using the population as the standard. In the presence of conditional ex-

changeability, this standardized risk can be interpreted as the (counterfactual)

risk that would have been observed had all the individuals in the population

been treated.

The standardized risks in the treated and the untreated are equal to the

counterfactual risks under treatment and no treatment, respectively. There-

fore, the causal risk ratio
Pr[ =1 = 1]

Pr[ =0 = 1]
can be computed by standardization asP

 Pr[ = 1| =   = 1]Pr [ = ]P
 Pr[ = 1| =   = 0]Pr [ = ]

.
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2.4 Inverse probability weighting

In the previous section we computed the causal risk ratio in a conditionally

randomized experiment via standardization. In this section we compute this

causal risk ratio via inverse probability weighting. The data in Table 2.2

can be displayed as a tree in which all 20 individuals start at the left and

progress over time towards the right, as in Figure 2.1. The leftmost circle of

the tree contains its first branching: 8 individuals were in non critical condi-

tion ( = 0) and 12 in critical condition ( = 1). The numbers in parenthesesFigure 2.1 is an example of a

finest fully randomized causally in-

terpreted structured tree graph or

FFRCISTG (Robins 1986, 1987).

Did we win the prize for the worst

acronym ever?

are the probabilities of being in noncritical, Pr [ = 0] = 820 = 04, or crit-

ical, Pr [ = 1] = 1220 = 06, condition. Let us follow, for example, the

branch  = 0. Of the 8 individuals in this branch, 4 were untreated ( = 0)

and 4 were treated ( = 1). The conditional probability of being untreated

is Pr [ = 0| = 0] = 48 = 05, as shown in parentheses. The conditional

probability of being treated Pr [ = 1| = 0] is 05 too. The upper right circle
represents that, of the 4 individuals in the branch ( = 0  = 0), 3 survived

( = 0) and 1 died ( = 1). That is, Pr [ = 0| = 0  = 0] = 34 and

Pr [ = 1| = 0  = 0] = 14 The other branches of the tree are interpreted
analogously. The circles contain the bifurcations defined by non treatment

variables. We now use this tree to compute the causal risk ratio.

Figure 2.1

The denominator of the causal risk ratio, Pr[ =0 = 1], is the counterfac-

tual risk of death had everybody in the population remained untreated. Let

us calculate this risk. In Figure 2.1, 4 out of 8 individuals with  = 0 were

untreated, and 1 of them died. How many deaths would have occurred had

the 8 individuals with  = 0 remained untreated? Two deaths, because if 8

individuals rather than 4 individuals had remained untreated, then 2 deaths

rather than 1 death would have been observed. If the number of individuals is

multiplied times 2, then the number of deaths is also doubled. In Figure 2.1,

3 out of 12 individuals with  = 1 were untreated, and 2 of them died. How

many deaths would have occurred had the 12 individuals with  = 1 remained
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Fine Point 2.2

Risk periods. We have defined a risk as the proportion of subjects who develop the outcome of interest during a

particular period. For example, the 5-day mortality risk in the treated Pr[ = 1| = 0] is the proportion of treated

subjects who died during the first five days of follow-up. Throughout the book we often specify the period when the

risk is first defined (e.g., 5 days) and, for conciseness, omit it later. That is, we may just say “the mortality risk” rather

than “the five-day mortality risk.”

The following example highlights the importance of specifying the risk period. Suppose a randomized experiment

was conducted to quantify the causal effect of antibiotic therapy on mortality among elderly humans infected with the

plague bacteria. An investigator analyzes the data and concludes that the causal risk ratio is 005, i.e., on average

antibiotics decrease mortality by 95%. A second investigator also analyzes the data but concludes that the causal risk

ratio is 1, i.e., antibiotics have a null average causal effect on mortality. Both investigators are correct. The first

investigator computed the ratio of 1-year risks, whereas the second investigator computed the ratio of 100-year risks.

The 100-year risk was of course 1 regardless of whether subjects received the treatment. When we say that a treatment

has a causal effect on mortality, we mean that death is delayed, not prevented, by the treatment.

untreated? Eight deaths, or 2 deaths times 4, because 12 is 3×4. That is, if all
8+ 12 = 20 individuals in the population had been untreated, then 2+ 8 = 10

would have died. The denominator of the causal risk ratio, Pr[ =0 = 1], is

1020 = 05. The first tree in Figure 2.2 shows the population had everybody

remained untreated. Of course, these calculations rely on the condition that

treated individuals with  = 0, had they remained untreated, would have had

the same probability of death as those who actually remained untreated. This

condition is precisely exchangeability given  = 0.

Figure 2.2

The numerator of the causal risk ratio Pr[ =1 = 1] is the counterfactual

risk of death had everybody in the population been treated. Reasoning as in

the previous paragraph, this risk is calculated to be also 1020 = 05, under

exchangeability given  = 1. The second tree in Figure 2.2 shows the popu-

lation had everybody been treated. Combining the results from this and the

previous paragraph, the causal risk ratio Pr[ =1 = 1]Pr[ =0 = 1] is equal

to 0505 = 1. We are done.

Let us examine how this method works. The two trees in Figure 2.2 are

essentially a simulation of what would have happened had all subjects in the
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population been untreated and treated, respectively. These simulations are

correct under conditional exchangeability. Both simulations can be pooled to

create a hypothetical population in which every individual appears both as a

treated and as an untreated individual. This hypothetical population, twice

as large as the original population, is known as the pseudo-population. Fig-

ure 2.3 shows the entire pseudo-population. Under conditional exchangeability

 
`

| in the original population, the treated and the untreated are (uncon-
ditionally) exchangeable in the pseudo-population because the  is independent

of . In other words, the associational risk ratio in the pseudo-population is

equal to the causal risk ratio in both the pseudo-population and the original

population.

This method is known as inverse probability (IP) weighting. To see why,

let us look at, say, the 4 untreated individuals with  = 0 in the population

of Figure 2.1. These individuals are used to create 8 members of the pseudo-IP weighted estimators were pro-

posed by Horvitz and Thompson

(1952) for surveys in which subjects

are sampled with unequal probabil-

ities

population of Figure 2.3. That is, each of them is assigned a weight of 2, which

is equal to 105. Figure 2.1 shows that 05 is the conditional probability of

staying untreated given  = 0. Similarly, the 9 treated subjects with  = 1 in

Figure 2.1 are used to create 12 members of the pseudo-population. That is,

each of them is assigned a weight of 133 = 1075. Figure 2.1 shows that 075

is the conditional probability of being treated given  = 1. Informally, the

pseudo-population is created by weighting each individual in the population

by the inverse of the conditional probability of receiving the treatment levelIP weight:  = 1 [|]
that she indeed received. These IP weights are shown in the last column of

Figure 2.3.

Figure 2.3

IP weighting yielded the same result as standardization–causal risk ra-

tio equal to 1– in our example above. This is no coincidence: standardiza-

tion and IP weighting are mathematically equivalent (see Technical Point 2.3).

Each method uses a different set of the probabilities shown in Figure 2.1: IP

weighting uses the conditional probability of treatment  given the covariate
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Technical Point 2.2

Formal definition of IP weights. A subject’s IP weight depends on her values of treatment  and covariate .

For example, a treated subject with  =  receives the weight 1Pr [ = 1| = ], whereas an untreated subject

with  = 0 receives the weight 1Pr [ = 0| = 0]. We can express these weights using a single expression for all
subjects–regardless of their individual treatment and covariate values–by using the probability density function (pdf)
of  rather than the probability of . The conditional pdf of  given  evaluated at the values  and  is represented
by | [|], or simply as  [|]. For discrete variables  and ,  [|] is the conditional probability Pr [ = | = ].

In a conditionally randomized experiment,  [|] is positive for all  such that Pr [ = ] is nonzero.

Since the denominator of the weight for each subject is the conditional density evaluated at the subject’s own values

of  and , it can be expressed as the conditional density evaluated at the random arguments  and  (as opposed

to the fixed arguments  and ), that is, as  [|]. This notation, which appeared in Figure 2.3, is used to define the
IP weights  = 1 [|]. It is needed to have a unified notation for the weights because Pr [ = | = ] is not

considered proper notation.

, standardization uses the probability of the covariate  and the conditional

probability of outcome  given  and .

Because both standardization and IP weighting simulate what would have

been observed if the variable (or variables in the vector)  had not been used

to decide the probability of treatment, we often say that these methods adjust

for . (In a slight abuse of language we sometimes say that these methods

control for , but this “analytic control” is quite different from the “physical

control” in a randomized experiment.) Standardization and IP weighting can

be generalized to conditionally randomized studies with continuous outcomes

(see Technical Point 2.3).

Why not finish this book here? We have a study design (an ideal random-

ized experiment) that, when combined with the appropriate analytic method

(standardization or IP weighting), allows us to compute average causal effects.

Unfortunately, randomized experiments are often unethical, impractical, or un-

timely. For example, it is questionable that an ethical committee would have

approved our heart transplant study. Hearts are in short supply and society

favors assigning them to subjects who are more likely to benefit from the trans-

plant, rather than assigning them randomly among potential recipients. Also

one could question the feasibility of the study even if ethical issues were ig-

nored: double-blind assignment is impossible, individuals assigned to medical

treatment may not resign themselves to forego a transplant, and there may not

be compatible hearts for those assigned to transplant. Even if the study were

feasible, it would still take several years to complete it, and decisions must be

made in the interim. Frequently, conducting an observational study is the least

bad option.
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Technical Point 2.3

Equivalence of IP weighting and standardization. The standardized mean for treatment level  is defined asP


E [ | =  = ] Pr [ = ], and the IP weighted mean of  for treatment level  is defined as E

∙
 ( = )

 [|]
¸

i.e., the mean of  , reweighted by the IP weight  = 1 [|], in subjects with treatment value  = . The

function  ( = ) takes value 1 for subjects with  = , and 0 for the others. The definitions of standardized and

IP weighted means, as well as the proofs below, assume that  [|] is positive for all  such that Pr [ = ] is nonzero.

This positivity condition is guaranteed to hold in conditionally randomized experiments.

We now prove the equality of the IP weighted mean and the standardized mean. By definition of an expectation,

E

∙
 ( = )

 [|]
¸
=
X


1

 [|] {E [ | =  = ]  [|] Pr [ = ]}

=
P


{E [ | =   = ] Pr [ = ]} where in the final step we cancelled  [|] from the numerator and denominator.
The proof treats  and  as discrete but not necessarily dichotomous. For continuous  simply replace the sum over

 with an integral.

The proof makes no reference to counterfactuals or to causality. However if we further assume conditional ex-

changeability then both the IP weighted and the standardized means are equal to the counterfactual mean E [ ]. Here

we provide two different proofs of this last statement. First, we prove equality of E [ ] and the standardized mean as

in the text

E [ ] =
X


E [ | = ] Pr [ = ] =
X


E [ | =   = ] Pr [ = ] =
X


E [ | =   = ] Pr [ = ]

where the second equality is by exchangeability and the third by consistency. Second, we prove equality of E [ ] and

the IP weighted mean as follows:

E

∙
 ( = )

 [|] 

¸
is equal to E

∙
 ( = )

 [|]  

¸
by consistency. Next:

E

∙
 ( = )

 [|]  

¸
= E

½
E

∙
 ( = )

 [|]  

¯̄̄̄


¸¾
= E

½
E

∙
 ( = )

 [|]

¯̄̄̄


¸
E [ |]

¾
(by conditional exchangeability)

= E {E [ |]} (because E
∙
 ( = )

 [|]

¯̄̄̄


¸
= 1 )

= E [ ]

The extension to polytomous treatments (i.e.,  can take more than two values) is straightforward. When treatment

is continuous, which is unlikely in conditionally randomized experiments, effect estimates based on the IP weights

 = 1 [|] have infinite variance and thus cannot be used. Chapter 12 describes generalized weights.



Chapter 3
OBSERVATIONAL STUDIES

Consider again the causal question “does one’s looking up at the sky make other pedestrians look up too?” After

considering a randomized experiment as in the previous chapter, you concluded that looking up so many times

was too time-consuming and unhealthy for your neck bones. Hence you decided to conduct the following study:

Find a nearby pedestrian who is standing in a corner and not looking up. Then identify a second pedestrian who

is walking towards the first one and not looking up either. Observe and record their behavior during the next 10

seconds. Repeat this process a few thousand times. You could now compare the proportion of second pedestrians

who looked up after the first pedestrian did, and compare it with the proportion of second pedestrians who looked

up before the first pedestrian did. Such a scientific study in which the investigator passively observes and records

the relevant data is an observational study.

If you had conducted the observational study described above, critics could argue that two pedestrians may

both look up not because the first pedestrian’s looking up causes the other’s looking up, but because they both

heard a thunderous noise above or some rain drops started to fall, and thus your study findings are inconclusive

as to whether one’s looking up makes others look up. These criticisms do not apply to randomized experiments,

which is one of the reasons why randomized experiments are central to the theory of causal inference. However,

in practice, the importance of randomized experiments for the estimation of causal effects is more limited. Many

scientific studies are not experiments. Much human knowledge is derived from observational studies. Think of

evolution, tectonic plates, global warming, or astrophysics. Think of how humans learned that hot coffee may cause

burns. This chapter reviews some conditions under which observational studies lead to valid causal inferences.

3.1 The randomized experiment paradigm

Ideal randomized experiments can be used to identify and quantify average

causal effects because the randomized assignment of treatment leads to ex-

changeability. Take a marginally randomized experiment of heart transplant

and mortality as an example: if those who received a transplant had not re-

ceived it, they would have been expected to have the same death risk as those

who did not actually receive the heart transplant. As a consequence, an asso-

ciational risk ratio of 07 from the randomized experiment is expected to equal

the causal risk ratio. As discussed in Chapters 8 and 9, the previous sentence

needs to be qualified in real, as opposed to ideal, randomized experiments with

loss to follow-up and noncompliance with the assigned treatment.

Observational studies, on the other hand, may be much less convincing (for

an example, see the introduction to this chapter). A key reason for our hesita-

tion to endow observational associations with a causal interpretation is the lackRubin (1974, 1978) extended Ney-

man’s theory for randomized ex-

periments to observational studies,

and introduced the idea that one

could view causal inference from

observational studies as a missing

data problem.

of randomized treatment assignment. As an example, take an observational

study of heart transplant and mortality in which those who received the heart

transplant were more likely to have a severe heart condition. Then if those

who received a transplant had not received it, they would have been expected

to have a greater death risk than those who did not actually receive the heart

transplant. As a consequence, an associational risk ratio of 11 from the ob-

servational study would be a compromise between the truly beneficial effect of

transplant on mortality (which pushes the associational risk ratio to be under
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1) and the underlying greater mortality risk in those who received transplant

(which pushes the associational risk ratio to be over 1). The best explanation

for an association between treatment and outcome in an observational study

is not necessarily a causal effect of the treatment on the outcome.

While recognizing that randomized experiments have intrinsic advantages

for causal inference, sometimes we are stuck with observational studies to an-

swer causal questions. What do we do? We analyze our data as if treatment

had been randomly assigned conditional on the measured covariates–though

we know this is at best an approximation. Causal inference from observational

data then revolves around the hope that the observational study can be viewed

as a conditionally randomized experiment. An observational study can be con-

ceptualized as a conditionally randomized experiment under the following three

conditions:Table 3.1
  

Rheia 0 0 0

Kronos 0 0 1

Demeter 0 0 0

Hades 0 0 0

Hestia 0 1 0

Poseidon 0 1 0

Hera 0 1 0

Zeus 0 1 1

Artemis 1 0 1

Apollo 1 0 1

Leto 1 0 0

Ares 1 1 1

Athena 1 1 1

Hephaestus 1 1 1

Aphrodite 1 1 1

Cyclope 1 1 1

Persephone 1 1 1

Hermes 1 1 0

Hebe 1 1 0

Dionysus 1 1 0

1. the values of treatment under comparison correspond to well-defined in-

terventions that, in turn, correspond to the versions of treatment in the

data

2. the conditional probability of receiving every value of treatment, though

not decided by the investigators, depends only on the measured covariates

3. the conditional probability of receiving every value of treatment is greater

than zero, i.e., positive

In this chapter we describe these three conditions in the context of obser-

vational studies. Condition 1, which is necessary for the other two conditions

to be defined, was referred to as consistency in Chapter 1. Condition 2 was re-

ferred to as exchangeability in previous chapters, and condition 3 was referred

to as positivity in Technical Point 2.3. We will see that these conditions are

often heroic, which explains why causal inferences from observational studies

are viewed with suspicion.

When any of these conditions–and therefore the analogy between observa-

tional study and conditionally randomized experiment–does not hold, there is

another possible approach to causal inference from observational data: hoping

that a predictor of treatment, referred to as an instrumental variable, was ran-

domly assigned conditional on the measured covariates. Not surprisingly, ob-

servational methods based on the analogy with a conditionally randomized ex-

periment have been traditionally privileged in disciplines in which this analogy

is often reasonable (e.g., epidemiology), whereas instrumental variable methods

have been traditionally privileged in disciplines in which observational studies

cannot often be conceptualized as conditionally randomized experiments given

the measured covariates (e.g., economics).

We discuss instrumental variable methods in Chapter 16. Until then, we

will focus on causal inference approaches that rely on the ability of the obser-

vational study to emulate a conditionally randomized experiment. Therefore,

for each causal question that we intend to answer using observational data, we

will need to carefully describe (i) the randomized experiment that we would

like to, but cannot, conduct, and (ii) how the observational study emulates

that randomized experiment.

In ideal conditionally randomized experiments one can identify causal ef-

fects simply by applying IP weighting or standardization to the data. For

example, in the previous chapter, we computed a causal risk ratio equal to

1 based exclusively on the data in Table 2.2, which arose from a condition-

ally randomized experiment. That is, in ideal randomized experiments, the
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data contain sufficient information to identify causal effects. In contrast, as

we discuss in the following sections, the information contained in observational

data is insufficient to identify causal effects. Suppose the data in Table 3.1

arose from an observational study. (These are exactly the same data aris-

ing from the conditionally randomized study in Table 2.2.) To compute the

causal risk ratio from this observational study, we need to supplement the in-

formation contained in the data with the information contained in the above

conditions; only then the causal effect of treatment becomes identifiable. ItThe combination of exchangeabil-

ity and positivity is also referred

as weak ignorability, and the combi-

nation of full exchangeability (see

Technical Point 2.1) and positivity

as strong ignorability (Rosenbaum and

Rubin 1983).

follows that causal effects can be identified from observational studies by using

IP weighting or standardization when the three above conditions–consistency,

exchangeability, and positivity–hold. We therefore refer to them as identifi-

ability conditions (see Fine Point 3.4). Causal inference from observational

data requires two sources of information: data and identifiability assumptions.

In Chapter 16 we discuss identifiability assumptions other than the three dis-

cussed here.

3.2 Exchangeability

We have already said much about exchangeability  
`

. In marginally (i.e.,

unconditionally) randomized experiments, the treated and the untreated are

exchangeable because the treated, had they remained untreated, would have

experienced the same average outcome as the untreated did, and vice versa.

This is so because randomization ensures that the independent predictors of the

outcome are equally distributed between the treated and the untreated groups.An independent predictor of the

outcome is a covariate associated

with the outcome  within levels of

treatment. For dichotomous out-

comes, independent predictors of

the outcome are often referred to

as risk factors for the outcome.

For example, take the study summarized in Table 3.1. We said in the previous

chapter that exchangeability clearly does not hold in this study because 69%

treated versus 43% untreated individuals were in critical condition  = 1

at baseline. This imbalance in the distribution of an independent outcome

predictor cannot occur in a marginally randomized experiment (actually, such

imbalance might occur by chance but let us keep working under the illusion

that our study is large enough to prevent chance findings).

On the other hand, an imbalance in the distribution of independent out-

come predictors  between the treated and the untreated is expected by design

in conditionally randomized experiments in which the probability of receiving

treatment depends on . The study in Table 3.1 is such a conditionally random-

ized experiment: the treated and the untreated are not exchangeable–because

the treated had, on average, a worse prognosis at the start of the study–but

the treated and the untreated are conditionally exchangeable within levels of

the variable . In the subset  = 1 (critical condition), the treated and the

untreated are exchangeable because the treated, had they remained untreated,

would have experienced the same average outcome as the untreated did, and

vice versa. And similarly for the subset  = 0. An equivalent statement:

conditional exchangeability  
`

| holds in conditionally randomized ex-

periments because, within levels of , all other predictors of the outcome are

equally distributed between the treated and the untreated groups.

Back to observational studies. When treatment is not randomly assigned

by the investigators, the reasons for receiving treatment are likely to be associ-

ated with some outcome predictors. That is, like in a conditionally randomized

experiment, the distribution of outcome predictors will generally vary between

the treated and untreated groups in an observational study. For example, the

data in Table 3.1 could have arisen from an observational study in which doc-
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Fine Point 3.1

Attributable fraction. We have described effect measures like the causal risk ratio Pr[ =1 = 1]Pr[ =0 = 1] and

the causal risk difference Pr[ =1 = 1] − Pr[ =0 = 1]. Both the causal risk ratio and the causal risk difference

are examples of effect measures that compare the counterfactual risk under treatment  = 1 with the counterfactual

risk under treatment  = 0. However, one could also be interested in measures that compare the observed risk with

the counterfactual risk under either treatment  = 1 or  = 0. This contrast between observed and counterfactual

risks allows us to compute the proportion of cases that are attributable to treatment in an observational study, i.e.,

the proportion of cases that would not have occurred had treatment not occurred. For example, suppose that all 20

individuals in our population attended a dinner in which they were served either ambrosia ( = 1) or nectar ( = 0).

The following day, 7 of the 10 individuals who received  = 1, and 1 of the 10 individuals who received  = 0, were

sick. For simplicity, assume exchangeability of the treated and the untreated so that the causal risk ratio is 0701 = 7

and the causal risk difference is 07 − 01 = 06. (In general, compute the effect measures via standardization if the

identifiability conditions hold.) It was later discovered that the ambrosia had been contaminated by a flock of doves,

which explains the increased risk summarized by both the causal risk ratio and the causal risk difference. We now

address the question ‘what fraction of the cases was attributable to consuming ambrosia?’

In this study we observed 8 cases, i.e., the observed risk was Pr [ = 1] = 820 = 04. The risk that would

have been observed if everybody had received  = 0 is Pr[ =0 = 1] = 01. The difference between these two risks

is 04 − 01 = 03. That is, there is an excess 30% of the individuals who did fall ill but would not have fallen ill if

everybody in the population had received  = 0 rather than their treatment . Because 0304 = 075, we say that

75% of the cases are attributable to treatment  = 1: compared with the 8 observed cases, only 2 cases would have

occurred if everybody had received  = 0. This excess fraction is defined as

Pr [ = 1]− Pr[ =0 = 1]

Pr [ = 1]

See Fine Point 5.4 for a discussion of the excess fraction in the context of the sufficient-component-cause framework.

Besides the excess fraction, other definitions of attributable fraction have been proposed. For example, the etiologic

fraction is defined as the proportion of cases whose disease originated from a biologic (or other) process in which

treatment had an effect. This is a mechanistic definition of attributable fraction that does not rely on the concept of

excess cases and thus can only be computed in randomized experiments under strong assumptions. The etiologic fraction,

also known as “probability of causation,” has legal relevance because it is used to award compensation in lawsuits. There

are yet other definitions of attributable fraction. Greenland and Robins (1988) and Robins and Greenland (1989) discuss

the definition, interpretation, estimability, and estimation of the various attributable fractions.

tors direct the scarce heart transplants to those who need them most, i.e.,

individuals in critical condition  = 1. In fact, if the only outcome predictor

that is unequally distributed between the treated and the untreated is , then

one can refer to the study in Table 3.1 as either (i) an observational study in

which the probability of treatment  = 1 is 075 among those with  = 1 and

050 among those with  = 0, or (ii) a (non blinded) conditionally randomized

experiment in which investigators randomly assigned treatment  = 1 with

probability 075 to those with  = 1 and 050 to those with  = 0. Both

characterizations of the study are logically equivalent. Under either character-

ization, conditional exchangeability  
`

| holds and standardization or IP
weighting can be used to identify the causal effect.

Of course, the crucial question for the observational study is whether  is

the only outcome predictor that is unequally distributed between the treated

and the untreated. Sadly, the question must remain unanswered. For example,

suppose the investigators of our observational study strongly believe that the

treated and the untreated are exchangeable within levels of . Their reasoning



Observational studies 29

goes as follows: “Heart transplants are assigned to individuals with low proba-

bility of rejecting the transplant, that is, a heart with certain human leukocyte

antigen (HLA) genes will be assigned to a subject who happen to have com-

patible genes. Because HLA genes are not predictors of mortality, it turns

out that treatment assignment is essentially random within levels of .” Thus

our investigators are willing to work under the assumption that conditional

exchangeability  
`

| holds.
The key word is “assumption.” No matter how convincing the investigators’

story may be, in the absence of randomization, there is no guarantee that

conditional exchangeability holds. For example, suppose that, unknown to

the investigators, doctors prefer to transplant hearts into nonsmokers. If two

study subjects with  = 1 have similar HLA genes, but one of them is a smoker

( = 1) and the other one is a nonsmoker ( = 0), the one with  = 1 hasWe use  to denote unmeasured

variables. Because unmeasured

variables  cannot be used for stan-

dardization or IP weighting, the

causal effect cannot be identified

when the measured variables  are

insufficient to achieve conditional

exchangeability.

a lower probability of receiving treatment  = 1. When the distribution of

smoking, an important predictor of the outcome, differs between the treated

(lower proportion of smokers  = 1) and the untreated (higher proportion of

smokers  = 1) with  = 1, conditional exchangeability given  does not hold.

Importantly, collecting data on smoking would not prevent the possibility that

other imbalanced outcome predictors, unknown to the investigators, remain

unmeasured.

Thus exchangeability  
`

| cannot be generally expected to hold in

observational studies. Specifically, conditional exchangeability  
`

| will
not hold if there exist unmeasured independent predictors  of the outcome

such that the probability of receiving treatment  depends on  within strata

of . Worse yet, even if conditional exchangeability  
`

| held, the inves-
tigators cannot empirically verify that is the case. How can they check that

the distribution of smoking is equal in the treated and the untreated if they

have not collected data on smoking? What about all the other unmeasured

outcome predictors  that may also be differentially distributed between the

treated and the untreated? Thus when we analyze an observational studyTo verify conditional exchange-

ability, one needs to confirm

that Pr [  = 1| =   = ] =

Pr [  = 1| 6=   = ]. But this

is logically impossible because, for

individuals who do not receive

treatment  ( 6= ) the value of

  is unknown and so the right

hand side cannot be empirically

evaluated.

under the assumption of conditional exchangeability, we must hope that the

assumption is at least approximately true.

Investigators can use their expert knowledge to enhance the plausibility

of the conditional exchangeability assumption. They can measure many rele-

vant variables  (e.g., determinants of the treatment that are also independent

outcome predictors), rather than only one variable as in Table 3.1, and then as-

sume that conditional exchangeability is approximately true within the strata

defined by the combination of all those variables . Unfortunately, no mat-

ter how many variables are included in , there is no way to test that the

assumption is correct, which makes causal inference from observational data

a risky task. The validity of causal inferences requires that the investigators’

expert knowledge is correct. This knowledge, encoded as the assumption of

exchangeability conditional on the measured covariates, supplements the data

to identify the causal effect of interest.

3.3 Positivity

Some investigators plan to conduct an experiment to compute the average

effect of heart transplant  on 5-year mortality  . It goes without saying that

the investigators will assign some individuals to receive treatment level  = 1

and others to receive treatment level  = 0. Consider the alternative: the
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investigators assign all subjects to either  = 1 or  = 0. That would be

silly. With all the subjects receiving the same treatment level, computing the

average causal effect would be impossible. Instead we must assign treatment

so that, with near certainty, some subjects will be assigned to each of the

treatment groups. In other words, we must ensure that there is a probability

greater than zero–a positive probability–of being assigned to each of the

treatment levels. This is the positivity condition, sometimes referred to as thePositivity can be empirically vio-

lated in small samples (see Chap-

ter 12) but, for now, we will only

consider causal inference with very

large sample sizes.

experimental treatment assumption, that is required for causal inference.

We did not emphasize positivity when describing experiments because pos-

itivity is taken for granted in those studies. In marginally randomized ex-

periments, the probabilities Pr [ = 1] and Pr [ = 0] are both positive by

design. In conditionally randomized experiments, the conditional probabilities

Pr [ = 1| = ] and Pr [ = 0| = ] are also positive by design for all levels

of the variable . For example, if the data in Table 3.1 had arisen from a con-

ditionally randomized experiment, the conditional probabilities of assignment

to heart transplant would have been Pr [ = 1| = 1] = 075 for individuals in
critical condition and Pr [ = 1| = 0] = 050 for the others. Positivity holds,
conditional on , because neither of these probabilities is 0 (nor 1, which would

imply that the probability of no heart transplant  = 0 would be 0). Thus

we say that there is positivity if Pr [ = | = ]  0 for all  involved in the

causal contrast. Actually, this definition of positivity is incomplete because, if

our study population were restricted to the group  = 1, then there would be no

need to require positivity in the group  = 0 (our inference would be restricted

to the group  = 1 anyway). Thus there is positivity if Pr [ = | = ]  0Positivity: Pr [ = | = ]  0

for all  with Pr [ = ] 6= 0 for all  with Pr [ = ] 6= 0 in the population of interest.
In our example of Table 3.1, we say that positivity holds because there

are people at all levels of treatment (i.e.,  = 0 and  = 1) in every level

of  (i.e.,  = 0 and  = 1). When exchangeability is achieved conditional

on some variables , then it is sufficient to have positivity with respect to

just those variables. For example, suppose the variable “having blue eyes” is

not an independent predictor of the outcome given  and . Suppose further

that positivity does not hold for “having blue eyes” because in the group in

critical condition  = 1, blue-eyed subjects were personally selected by the

investigators and assigned to heart transplant  = 1 (and all others to med-

ical treatment  = 0). Nonetheless the standardized risk (standardized with

respect to ) and the IP weighted risk are still equal to the counterfactual risk.

In observational studies, neither positivity nor exchangeability are guaran-

teed. For example, positivity would not hold if doctors always transplant a

heart to individuals in critical condition  = 1, i.e., if Pr [ = 0| = 1] = 0,

as shown in Figure 3.1. A difference between the conditions of exchangeabil-

ity and positivity is that positivity can sometimes be empirically verified (see

Chapter 12).

Our discussion of standardization and IP weighting in the previous chapter

was explicit about the exchangeability condition, but only implicitly assumed

the positivity condition (except in Technical Point 2.3). Our previous defin-

itions of standardized risk and IP weighted risk are actually only meaningful

when positivity holds. To intuitively understand why the standardized and IP

weighted risk are not well-defined when the positivity condition fails, consider

Figure 3.1. If there were no untreated subjects ( = 0) with  = 1, the data

would contain no information to simulate what would have happened had all

treated subjects been untreated because there would be no untreated subjects

with  = 1 that could be considered exchangeable with the treated subjects

with  = 1. See Technical Point 3.1 for details.
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3.4 Consistency

Consider again a randomized experiment to compute the average effect of heart

transplant  on 5-year mortality  . Prior to enrolling patients in the study,

the investigators wrote a protocol in which the two interventions of interest–

heart transplant  = 1 and medical therapy  = 0–were described in detail.

That is, the investigators specified that individuals assigned to  = 1 were

to receive a particular type of pre-operative procedures, anesthesia, surgical

technique, post-operative intensive care, and immunosuppressive treatment.

Had the protocol not specified these details, it is possible that each doctor had

conducted the heart transplant in a different way, perhaps using her preferred

surgical technique or immunosuppressive therapy. That is, different versions

of the treatment “heart transplant” might have been applied to each patient

in the study (Fine Point 1.2 introduced the concept of multiple versions of

treatment).

The presence of multiple versions of treatment is problematic when the

causal effect varies across versions, i.e., when the versions of treatment are

relevant for the outcome. Then the magnitude of the average causal effect

depends on the proportion of individuals who received each version. For ex-

ample, the average causal effect of “heart transplant” in a study in which most

doctors used conventional immunosuppressive therapy may differ from that in

a study in which most doctors used a novel immunosuppressive therapy. In

this setting, the treatment “heart transplant” is not a unique treatment  but

rather a collection  of different versions of treatment. We use (), 0(), ...
to refer to the versions of treatment  = .

In the presence of multiple versions of treatment, the interventions of in-

terest (e.g., heart transplant, medical therapy) are not well defined. And if the

interventions are not well defined, the average causal effect is not well defined

either. What do we mean by “the causal effect of heart transplant” if heart
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Technical Point 3.1

Positivity for standardization and IP weighting. We have defined the standardized mean for treatment level 

as
P


E [ | =   = ] Pr [ = ]. However, this expression can only be computed if the conditional probability

E [ | =   = ] is well defined, which will be the case when the conditional probability Pr [ = | = ] is greater than

zero for all values  that occur in the population. That is, when positivity holds. (Note the statement Pr [ = | = ] 

0 for all  with Pr [ = ] 6= 0 is effectively equivalent to  [|]  0 with probability 1.) Therefore, the standardized

mean is defined asX


E [ | =  = ] Pr [ = ] if Pr [ = | = ]  0 for all  with Pr [ = ] 6= 0

and is undefined otherwise. The standardized mean can be computed only if, for each value of the covariate  in the

population, there are some subjects that received the treatment level .

Similarly, the IP weighted mean for treatment level , E

∙
 ( = )

 [|]
¸
, is only well defined under positiv-

ity. When positivity does not hold, the undefined ratio 0
0
occurs in computing the expectation. Define the

“apparent” IP weighted mean for treatment level  to be E

∙
 ( = )

 [|]
¸
. This mean is always well defined

since its denominator  [|] can never be zero. When positivity holds, the “apparent” and true IP weighted

means for treatment level  are equal to one another (and to the standardized mean) and thus all quantities are

well defined. When positivity fails to hold, the “apparent” IP weighted mean for treatment level  is equal to

Pr [ ∈ ()]
P


E [ | =   =   ∈ ()] Pr [ = | ∈ ()] where () = {; Pr ( = | = )  0} is the set
of values  for which  =  may be observed with positive probability. Under exchangeability, the “apparent” IP weighted

mean equals E [ | ∈ ()] Pr [ ∈ ()].

From the definition of (), (0) cannot equal (1) when  is binary and positivity does not hold. In this case

the contrast E

∙
 ( = 1)

 [|]
¸
− E

∙
 ( = 0)

 [|]
¸
has no causal interpretation, even under exchangeability, because it

is a contrast between two different groups. Under positivity, (1) = (0) and the contrast is the average causal effect

if exchangeability holds.

transplant  has multiple versions (), 0(), ... each of them with different

effects on the outcome? To avoid having to answer this question, we have so

far assumed that the treatment of interest either does not have multiple ver-

sions, or has multiple versions with identical effects, i.e., the versions are not

relevant for the outcome. For example, when discussing the causal effect ofTreatment-variation irrelevance

(VanderWeele 2009) holds if, for

any two versions () and 0()
of treatment  = , 

()
 =


0()
 for all  and . 

()
 is

subject ’s counterfactual outcome

under version () = () of

treatment  = .

heart transplant ( = 1), we considered “heart transplant”–and also “med-

ical treatment”–as an intervention that is well defined and that does not vary

across individuals. That is, we assumed that all individuals receiving a heart

transplant were receiving the same version of treatment  = 1, and similarly

for  = 0.

This assumption of treatment-variation irrelevance may be reasonable in

ideal randomized studies with protocols that clearly specify the interventions

under study. On the other hand, in observational studies, the investigators

have no control over the versions of the treatment that were applied to the

individuals in the study. As a result, it is possible that multiple versions of

treatment were used. When using observational data for causal inference, we

need to carefully define the versions of interest and then collect sufficient data

to characterize them. If interested in the causal effect of heart transplant, we

need to decide which version(s) of heart transplant we are interested in (i.e.,
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we need to define  = 1 unambiguously), and record enough information on

the type of heart transplant so that only individuals receiving the version(s)

of interest are considered as treated individuals ( = 1) in the analysis. If

interested in the causal effect of exercise, we need to specify the version(s)

of exercise we are interested in (e.g., duration, intensity, frequency, type of

physical activity) and then include in the group  = 1 only individuals whose

observed data are consistent with the version(s) of interest.

Therefore, in theory, the problem of multiple versions of treatment can be

solved by restriction. If interested in the effect of exercise  = 1 defined as

running exactly 30 minutes per day at moderate intensity on a flat terrain,

we would only include individuals who run exactly 30 minutes per day at

moderate intensity on a flat terrain in the group  = 1. But restriction may

be impractical: if we define the intervention of interest in much detail, perhaps

no individual’s data are consistent with that version of treatment. The more

precise we get the higher the risk of nonpositivity in some subsets of the study

population. In practice, we need a compromise. For example, we may consider

as  = 1 running, or playing soccer, between 25 and 35 minutes per day. That

is, we effectively assume that several versions of treatment (e.g., running 25

minutes, running 26 minutes, running 27 minutes...) are not relevant for the

outcome, and pool them together.

There is another reason why restriction to the version of interest may be

problematic: we often have no data on the version of treatment. In fact, we

may not be able to even enumerate the versions. Suppose we conduct an ob-

servational study to estimate the average causal effect of “obesity”  on the

risk of mortality  . All individuals aged 40 in the country are followed until

their 50th birthday. At age 40, some subjects happen to be obese (body mass

index> 30 or  = 1) and others happen to be nonobese (body mass index 30
or  = 0). It turns out that obese subjects ( = 1) have a greater 10-year

risk of death ( = 1) than nonobese subjects ( = 0), i.e., the associational

risk ratio Pr[ = 1| = 1]Pr[ = 1| = 0] is greater than 1. This finding

establishes that obesity is associated with mortality or, equivalently, that obe-

sity is a predictor of mortality. This finding does not establish that obesity

has a causal effect on the 10-year mortality risk. To do so, we would need to

compare the risks if all subjects had been obese Pr[ =1 = 1] and nonobese

Pr[ =0 = 1] at age 40. But what exactly is meant by “the risks if all subjects

had been obese and nonobese”? The answer is not straightforward because it

is unclear what the treatment  means, which implies that the counterfactual

outcomes   are ill-defined.Robins and Greenland (2000) ar-

gued that well-defined counterfac-

tuals, or mathematically equivalent

concepts, are necessary for mean-

ingful causal inference. If the con-

terfactuals are ill-defined, the infer-

ence is also ill-defined.

To see this, take Kronos, an obese individual ( = 1) who died ( = 1).

There are many different ways in which an obese individual could have been

nonobese. That is, there are multiple versions ( = 0) of the treatment  = 0.

Here are some of them: more exercise, less food intake, more cigarette smoking,

genetic modification, bariatric surgery, any combination of the above. The

counterfactual outcome  =0 if Kronos had been nonobese rather than obese is

not well defined because its value depends on the particular version of ( = 0)

of treatment  = 0 that we consider. A nonobese Kronos might have died if he

had been nonobese through a lifetime of exercise (a bicycle accident), cigarette

smoking (lung cancer), or bariatric surgery (adverse reaction to anesthesia),

and might have survived if he had been nonobese through a better diet (fewer

calories from devouring his children) or more favorable genes (less fat tissue).

The definition of the counterfactual outcome  =1 is also problematic. Sup-

pose Kronos was obese because his genes predisposed him to large amounts of

fat tissue in both his waist and his coronary arteries. He had a fatal myocardial
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infarction at age 49 despite not smoking, exercising moderately, and keeping

a healthy diet. However, if he had been obese not because of his genes but

because of lack of exercise and too many calories in the diet, then he would

not have died by age 50. The outcome of an obese Kronos’s might have been

0 if he had been obese through mechanisms ( = 1) other than the ones that

actually made him obese, even though he was actually obese  = 1 and his

observed outcome  was 1. Thus, in settings with ill-defined interventions,

the consistency condition does not hold because the counterfactual outcome

  may not equal the observed outcome  in some people with  = .

The question “Does obesity have a causal effect on mortality?” is quite

vague because the answer depends on how one intervenes on obesity. ThisObesity may lead to less vague

causal questions in other settings.

Consider the effect of obesity on

job discrimination as defined by the

proportion of job applicants called

for a personal interview after the

employer reviews the applicant’s re-

sume and photograph. Because the

treatment here is really “obesity as

perceived by the prospective em-

ployer,” the mechanisms that led to

obesity are irrelevant.

problem arises for treatments  with multiple versions () when the versions

are relevant for the outcome of interest. For example, if the data in Table

3.1 came from observational study, we would need to assume that the many

versions of treatment  = 0 (e.g., the heart donor happened to survive the

chariot crash that would have led to his death, Zeus killed the surgeon before

the surgery appointment) are not relevant for the outcome, i.e., that Zeus’s

counterfactual outcome is the same under any of the versions of treatment and

thus can be unambiguously represented by  =0.

Because treatment-variation irrelevance cannot be taken for granted in ob-

servational studies, the interpretation of the causal effect is not always straight-

forward. At the very least, investigators need to characterize the versions of

treatment that operate in the population. Such characterization is simple in

experiments (i.e., whatever intervention investigators use to assign treatment),

and relatively unambiguous in some observational studies (e.g., those studying

the effects of medical treatments). For example, in an observational study of

aspirin and mortality, one can imagine how to hypothetically manipulate an

individual treatment’s level by simply withholding or administering aspirin at

the start of the study. On the other hand, the characterization of the versions of

“treatments” that are complex biological (e.g., body weight, LDL-cholesterol,

CD4 cell count, or C-reactive protein) or social (e.g., socioeconomic status)

processes is often more vague. This inherent vagueness has led some authors

to propose that only the causal effects of treatments that can be hypotheti-

cally manipulated should ever be considered. See Fine Point 3.2 for additionalHolland (1986): “no causation

without manipulation” discussion on the vagueness of hypothetical interventions.

There is one trick to address the vagueness of causal effects when the ver-

sions of treatment are unknown. Consider the following hypothetical inter-

vention: ‘assign everybody to being nonobese by changing the determinants

of body weight to reflect the distribution of those determinants in those who

already have nonobese weight in the study population.’ This hypothetical in-This is an example of a random in-

tervention or regime. Hernán and

Taubman (2008) discussed this im-

plicit intervention in observational

studies of obesity and health out-

comes.

tervention would randomly assign a version of treatment to each individual in

the study population so that the resulting distribution of versions of treatment

exactly matches the distribution of versions of treatment in the study popu-

lation. We can propose an analogous intervention ‘assign everybody to being

obese.’ This trick is implicitly used in the analysis of many observational stud-

ies that compare the risks Pr[ = 1| = 1] and Pr[ = 1| = 0] (often condi-
tional on other variables) to endow the contrast with a causal interpretation.

A problem with this trick is, of course, that the proposed random interven-

tions may not match any realistic interventions we are interested in. Learning

that intervening on ‘the determinants of body weight to reflect the distribu-

tion of those determinants in those with nonobese weight’ decreases mortality

by, say, 30% does not imply that any real world intervention on obesity (e.g.,

by modifying caloric intake or exercise levels) will decrease mortality by 30%
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Fine Point 3.2

Refining causal questions. The well-defined versus ill-defined dichotomy for causal questions is a pedagogic simplifi-

cation because no intervention is perfectly specified. The question “Does obesity have a causal effect on mortality?” is

more ill-defined than the question “Does low-fat diet have a causal effect on mortality?” or than the question “Does

exercise have a causal effect on mortality?” However, the latter question is more ill-defined than “Does 1 additional hour

of daily strenuous exercise have a causal effect on mortality?” And even this question is not perfectly defined because

the effect of the intervention will depend on how that hour would otherwise be spent. Reducing time spent laughing

with your friends, playing with your children, or rehearsing with your band may have a different effect on mortality than

reducing time eating, watching television, or studying.

No matter how much refining of the causal question, all causal effects from observational data are inherently vague.

But there is a question of degree of vagueness. The vagueness inherent in increased “exercise” is less serious than that

in “obesity” and can be further reduced by a more detailed specification of the intervention on exercise. That some

interventions sound technically unfeasible or plainly crazy simply indicates that the formulation of causal questions is

not straightforward. An explicit (counterfactual) approach to causal inference highlights the imprecision of ambiguous

causal questions, and the need for a common understanding of the interventions involved (Robins and Greenland, 2000).

too. In fact, if intervening on ‘determinants of body weight in the population’

requires intervening on genetic factors, then a 30% reduction in mortality may

be unattainable by interventions that can actually be implemented in the real

world.

3.5 Well-defined interventions are a pre-requisite for causal inference

What’s so wrong with estimating the causal effects of ill-defined interventions?

We may not precisely know which particular causal effect is being estimated

in an observational study, but is that really so important if indeed some causal

effect exists? A strong association between obesity and mortality may imply

that there exists some intervention on body weight that reduces mortality. As

described in the previous section, complex interventions that vary across sub-

jects are implicit in the analysis of many observational studies–for example,

those that attempt to estimate “the” causal effect of obesity. These implicit

interventions may not be meaningful for scientific or policy purposes. Yet one

could argue that there is some value in learning that many deaths could have

been prevented if all obese people had been forced to be of normal weight,

even if the intervention required for achieving that transformation is unspeci-

fied. This is an appealing, but risky, argument. We now discuss why accepting

ill-defined interventions prevents a proper consideration of exchangeability and

positivity in observational studies.

Investigators use their subject-matter knowledge to measure the covariates

 that will be adjusted for in the analysis. However, even in the absence of mul-

tiple versions of treatment, investigators cannot be certain that their efforts to

measure covariates have resulted in approximate conditional exchangeability.

This uncertainty, which is a fundamental shortcoming of causal inference from

observational data, is greatly exacerbated when the interventions of interest

are not well defined because of unknown versions of treatment. If we renounce

to characterize the intervention corresponding to the causal effect of obesity

, how can we identify and measure the covariates  that make obese and



36 Causal Inference

Fine Point 3.3

Possible worlds. Some philosophers of science define causal effects using the concept of “possible worlds.” The actual

world is the way things actually are. A possible world is a way things might be. Imagine a possible world  where

everybody receives treatment value , and a possible world 0 where everybody receives treatment value 0. The mean
of the outcome is E[ ] in the first possible world and E[ 0 ] in the second one. These philosophers say that there is

an average causal effect if E[ ] 6= E[ 0 ] and the worlds  and 0 are the two worlds closest to the actual world where
all subjects receive treatment value  and 0, respectively.

We introduced an individual’s counterfactual outcome   as her outcome under a well specified intervention that

assigned treatment value  to her. These philosophers prefer to think of the counterfactual   as the outcome in the

possible world that is closest to our world and where the subject was treated with . Both definitions are equivalent

when the only difference between the closest possible world and the actual world is that the intervention of interest

took place. The possible worlds formulation of counterfactuals replaces the sometimes difficult problem of specifying

the intervention of interest by the equally difficult problem of describing the closest possible world that is minimally

different from the actual world. Stalnaker (1968) and Lewis (1973) proposed counterfactual theories based on possible

worlds.

nonobese subjects conditionally exchangeable, i.e., covariates  that are deter-

minants of the versions () of treatment (obesity) and also risk factors for

the outcome (mortality)? When trying to estimate the effect of an unspecified

intervention, the concept of conditional exchangeability remains undefined.

The acceptance of unspecified interventions also affects positivity. Suppose

we decide to compute the effect of obesity on mortality by adjusting for some

measured covariates  that include some genetic factors. It is possible that

some genetic traits are so strongly associated to body weight that no subject

possessing them will be obese; that is, positivity does not hold. If enough

biologic knowledge is available, one could preserve positivity by restricting

the analysis to the strata of  in which the population contains both obese

and nonobese subjects. The price to pay for this strategy is potential lack of

generalizability of the estimated effect (see Chapter 4), as these strata may no

longer be representative of the original population.

Positivity violations point to another potential problem: unspecified inter-

ventions may be unreasonable. The apparently straightforward comparison

of obese and nonobese subjects in observational studies masks the true com-

plexity of the interventions ‘make everybody in the population nonobese’ and

‘make everybody in the population obese.’ Had these interventions been made

explicit, investigators would have realized that the interventions were too ex-

treme to be relevant for public health because drastic changes in body weight

(say, from body mass index of 30 to 25) in a short period are unachievable. Fur-

ther, these drastic changes are unlikely to be observed in the study data, and

thus any estimate of the effect of that intervention will rely heavily on model-

ing assumptions (see Part II). A more reasonable, even if still ill-characterized,

intervention may be to reduce body mass index by 5% over a two-year period.

In summary, violations of positivity are more likely to occur when estimating

the effect of extreme interventions, and extreme interventions are more likely

to go unrecognized when they are not explicitly specified.

The problems generated by unspecified interventions cannot be dealt with

by applying sophisticated statistical methods. All analytic methods for causal

inference from observational data described in this book yield effect estimates

that are only as well defined as the interventions that are being compared.
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Technical Point 3.2

Consistency and multiple versions of treatment. The consistency condition is necessary, together with conditional

exchangeability and positivity, to prove that the standardized mean and the IP weighted mean equal the counterfactual

mean (see Technical Point 2.3). In Chapter 1, we defined consistency as follows: For all individuals  in the study, if

 =  then  
 = . That is, consistency means that the outcome for every treated individual equals his outcome if he

had received treatment, and the outcome for every untreated individual equals his outcome if he had remained untreated.

This statement seems obviously true when treatment  has only one version, i.e., when it is a simple treatment. Let us

now consider a treatment  with multiple versions, i.e., a compound treatment.

For a compound treatment  with multiple relevant versions of treatment, consistency requires that the versions of

treatment–the interventions–are well-defined and are present in the data. Hernán and VanderWeele (2011) discussed

consistency for compound treatments with multiple versions.

Interestingly, even if the versions of treatment are not well defined, we may still articulate a consistency condition

that is guaranteed to hold: For individuals with  =  we let () denote the version of treatment  =  actually

received by individual ; for individuals with  6=  we define () = 0 so that () ∈ {0} ∪A(). The consistency
condition then requires for all ,

 = 
()
 when  =  and () = ().

That is, the outcome for every individual who received a particular version of treatment  =  equals his outcome

if he had received that particular version of treatment. This statement is true by definition of version of treatment if

we in fact define the counterfactual 
()
 for individual  with  =  and () = () as individual ’s outcome

that he actually had under actual treatment  and actual version (). However, using this consistency condition is

self-defeating because it prevents us from understanding what effect is being estimated and from being able to evaluate

the other two identifiability conditions.

Although the exchangeability condition can be replaced by other conditions

(see Chapter 16) and the positivity condition can be waived if one is willing to

make untestable modeling assumptions to extrapolate to conditions that are

not observed in the population, the requirement of well defined interventions

is so fundamental that it cannot be waived without simultaneously negating

the possibility of describing the causal effect that is being estimated.

3.6 Causation or prediction?

What randomized experiment are you trying to emulate? This is a key question

for causal inference from observational data. We may not be able to emulate a

randomized experiment using observational data because of lack of conditional

exchangeability or positivity for well-defined interventions, or because of ill-

defined interventions.

Consider again an observational study to estimate “the causal effect of obe-

sity on mortality.” Because there are many procedures to reduce body weight,

one could try to emulate many different randomized experiments. Some of

those experiments (e.g., chopping off an arm, starvation, smoking) can be ruled

out because they clearly do not correspond to any interesting intervention from

a public health standpoint. Interestingly, the experiment implicitly emulated

by many observational studies–which simply compare the conditional risk of

death in obese versus nonobese individuals–also lacks any public health in-

terest because the corresponding unspecified intervention is a complex and

probably unfeasible random regime.
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Also, we have argued that unspecified interventions make it impossible to

define whether exchangeability is achieved conditional on whatever variables

 are measured. It is even possible that the data analyst adjusts for some

variables  that are actually versions () of treatment . These versions

of treatment get then effectively excluded from the implicit intervention. For

example, the better we are able to adjust for known, measurable factors that de-

termine both body weight and mortality, e.g., diet, exercise, cigarette smoking,

the more we are isolating an implied intervention that changes the remaining

determinants of body weight, e.g., genes, asymptomatic illness. If the goal was

informing public health policy, it would then seem that we have strayed from

the most interesting questions. If we also try to adjust for genes and physiol-

ogy, we may be delving so far into biological (or social) processes that we may

encounter positivity violations.

Is everything lost when the observational data cannot be used to emulate an

interesting randomized experiment? Not really. Observational data may still

be quite useful by focusing on non-causal prediction. That obese individuals

have a higher mortality risk than nonobese individuals means that obesity

is a predictor of–is associated with–mortality. This is an important piece

of information to identify subjects at high risk of mortality. Note, however,

that by simply saying that obesity predicts–is associated with–mortality, we

remain agnostic about the causal effects of obesity on mortality: obesity might

predict mortality in the sense that carrying a lighter predicts lung cancer. Thus

the association between obesity and mortality is an interesting hypothesis-

generating exercise and a motivation for further research (why does obesity

predict mortality anyway?), but not necessarily an appropriate justification to

recommend a weight loss intervention targeted to the entire population.

By retreating into prediction from observational data, we avoid tackling

questions that cannot be logically asked in randomized experiments. On the

other hand, when causal inference is the ultimate goal, prediction may be

unsatisfying.
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Fine Point 3.4

Identifiability of causal effects. We say that an average causal effect is (non parametrically) identifiable when the

distribution of the observed data is compatible with a single value of the effect measure. Conversely, we say that an

average causal effect is nonidentifiable when the distribution of the observed data is compatible with several values of the

effect measure. For example, if the study in Table 3.1 had arisen from a conditionally randomized experiment in which

the probability of receiving treatment depended on the value of  (and hence conditional exchangeability  
`

|
holds by design) then we showed in the previous chapter that the causal effect is identifiable: the causal risk ratio equals

1, without requiring any further assumptions. However, if the data in Table 3.1 had arisen from an observational study,

then the causal risk ratio equals 1 only if we supplement the data with the assumption of conditional exchangeability

 
`

|. To identify the causal effect in observational studies, we need an assumption external to the data, an
identifying assumption. In fact, if we decide not to supplement the data with the identifying assumption, then the data

in Table 3.1 are consistent with a causal risk ratio

• lower than 1, if risk factors other than  are more frequent among the treated.
• greater than 1, if risk factors other than  are more frequent among the untreated.
• equal to 1, if all risk factors except  are equally distributed between the treated and the untreated or, equivalently,
if  

`
|.

In the absence of selection bias (see Chapter 8), the assumption of conditional exchangeability given  is often known

as the assumption of no unmeasured confounding given  (see Chapter 7). We now relate the concepts of identifiability

and confounding in a setting in which the two other identifying assumptions–positivity and consistency–hold.

In a marginally randomized experiment, exchangeability  
`

 ensures that effect measures can be computed

when complete data on treatment  and outcome  are available. For example, the causal risk ratio equals the

associational risk ratio. There is no confounding or, equivalently, the causal effect is identifiable given data on  and

 .

In an ideal conditionally randomized experiment, conditional exchangeability  
`

| ensures that effect measures
can be computed when complete data on treatment , outcome  , and variable  are available. For example, the

causal risk ratio equals the ratio of standardized risks. There is no unmeasured confounding given the measured variable

 or, equivalently, the causal effect is identifiable given data on ,  and  .

In an observational study, there is no guarantee that the treated and the untreated are conditionally exchangeable

given  only. Thus the effect measures may not be computed even if complete data on , , and  are available

because of unmeasured confounding (i.e., other variables besides  must be measured and conditioned on to achieve

exchangeability). Equivalently, the causal effect is not identifiable given the measured data.

This chapter discussed the assumptions required for nonparametric identification of average causal effects, that is,

for identification that does not require any modeling assumptions when the size of the study population is quasi-infinite.

Part II will discuss the use of models to estimate average causal effects.
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Chapter 4
EFFECT MODIFICATION

So far we have focused on the average causal effect in an entire population of interest. However, many causal

questions are about subsets of the population. Consider again the causal question “does one’s looking up at

the sky make other pedestrians look up too?” You might be interested in computing the average causal effect of

treatment–your looking up to the sky– in city dwellers and visitors separately, rather than the average effect in

the entire population of pedestrians.

The decision whether to compute average effects in the entire population or in a subset depends on the

inferential goals. In some cases, you may not care about the variations of the effect across different groups of

subjects. For example, suppose you are a policy maker considering the possibility of implementing a nationwide

water fluoridation program. Because this public health intervention will reach all households in the population,

your primary interest is in the average causal effect in the entire population, rather than in particular subsets.

You will be interested in characterizing how the causal effect varies across subsets of the population when the

intervention can be targeted to different subsets, or when the findings of the study need to be applied to other

populations.

This chapter emphasizes that there is not such a thing as the causal effect of treatment. Rather, the causal

effect depends on the characteristics of the particular population under study.

4.1 Definition of effect modification

We started this book by computing the average causal effect of heart trans-Table 4.1

  0  1

Rheia 1 0 1

Demeter 1 0 0

Hestia 1 0 0

Hera 1 0 0

Artemis 1 1 1

Leto 1 0 1

Athena 1 1 1

Aphrodite 1 0 1

Persephone 1 1 1

Hebe 1 1 0

Kronos 0 1 0

Hades 0 0 0

Poseidon 0 1 0

Zeus 0 0 1

Apollo 0 1 0

Ares 0 1 1

Hephaestus 0 0 1

Cyclope 0 0 1

Hermes 0 1 0

Dionysus 0 1 0

plant  on death  in a population of 20 members of Zeus’s extended family.

We used the data in Table 1.1, whose columns show the individual values

of the (generally unobserved) counterfactual outcomes  =0 and  =1. Af-

ter examining the data in Table 1.1, we concluded that the average causal

effect was null. Half of the members of the population would have died if

everybody had received a heart transplant, Pr[ =1 = 1] = 1020 = 05,

and half of the members of the population would have died if nobody had re-

ceived a heart transplant, Pr[ =0 = 1] = 1020 = 05. The causal risk ratio

Pr[ =1 = 1]Pr[ =0 = 1] was 0505 = 1 and the causal risk difference

Pr[ =1 = 1]− Pr[ =0 = 1] was 05− 05 = 0.
We now consider two new causal questions: What is the average causal

effect of  on  in women? And in men? To answer these questions we

will use Table 4.1, which contains the same information as Table 1.1 plus an

additional column with an indicator  for sex:  = 1 for females (referred

to as women in this book) and  = 0 for males (referred to as men). For

convenience, we have rearranged the table so that women occupy the first 10

rows, and men the last 10 rows.

Let us first compute the average causal effect in women. To do so, we

need to restrict the analysis to the first 10 rows of the table with  = 1. In

this subset of the population, the risk of death under treatment is Pr[ =1 =

1| = 1] = 610 = 06 and the risk of death under no treatment is Pr[ =0 =

1| = 1] = 410 = 04. The causal risk ratio is 0604 = 15 and the causal

risk difference is 06 − 04 = 02. That is, on average, heart transplant 
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increases the risk of death  in women.

Let us next compute the average causal effect in men. To do so, we need to

restrict the analysis to the last 10 rows of the table with = 0. In this subset

of the population, the risk of death under treatment is Pr[ =1 = 1| = 0] =

410 = 04 and the risk of death under no treatment is Pr[ =0 = 1| = 0] =

610 = 06. The causal risk ratio is 0406 = 23 and the causal risk difference

is 04− 06 = −02. That is, on average, heart transplant  decreases the risk
of death  in men.

Our example shows that a null average causal effect in the population does

not imply a null average causal effect in a particular subset of the population.

In Table 4.1, the null hypothesis of no average causal effect is true for the

entire population, but not for men or women when taken separately. It just

happens that the average causal effects in men and in women are of equal

magnitude but in opposite direction. Because the proportion of each sex is

50%, both effects cancel out exactly when considering the entire population.

Although exact cancellation of effects is probably rare, heterogeneity of the

individual causal effects of treatment is often expected because of variations in

individual susceptibilities to treatment. An exception occurs when the sharp

null hypothesis of no causal effect is true. Then no heterogeneity of effects

exists because the effect is null for every individual and thus the average causal

effect in any subset of the population is also null.

We are now ready to provide a definition of effect modifier. We say that

is a modifier of the effect of  on  when the average causal effect of  on See Section 6.5 for a structural clas-

sification of effect modifiers. varies across levels of . Since the average causal effect can be measured using

different effect measures (e.g., risk difference, risk ratio), the presence of effect

modification depends on the effect measure being used. For example, sex Additive effect modification:

E[ =1 −  =0| = 1] 6=
E[ =1 −  =0| = 0]

is an effect modifier of the effect of heart transplant  on mortality  on the

additive scale because the causal risk difference varies across levels of  . Sex

 is also an effect modifier of the effect of heart transplant  on mortality 

on the multiplicative scale because the causal risk ratio varies across levels ofMultiplicative effect modification:
E[ =1|=1]

E[ =0|=1]
6= E[ =1|=0]

E[ =0|=0]

Note that we do not consider effect

modification on the odds ratio scale

because the odds ratio is rarely, if

ever, the parameter of interest for

causal inference.

 . Note that we only consider variables  that are not affected by treatment

 as effect modifiers. Variables affected by treatment may be mediators of the

effect of treatment, as described in Chapter REF.

In Table 4.1 the causal risk ratio is greater than 1 in women ( = 1) and

less than 1 in men ( = 0). Similarly, the causal risk difference is greater

than 0 in women ( = 1) and less than 0 in men ( = 0). That is, we

say that there is qualitative effect modification because the average causal ef-

fects in the subsets  = 1 and  = 0 are in the opposite direction. In the

presence of qualitative effect modification, additive effect modification implies

multiplicative effect modification, and vice versa. In the absence of qualitative

effect modification, however, one can find effect modification on one scale (e.g.,

multiplicative) but not on the other (e.g., additive). To illustrate this point,

suppose that, in a second study, we computed the quantities shown to the left

of this line. In this second study, there is no additive effect modification byMultiplicative, but not additive, ef-

fect modification by  :

Pr[ =0 = 1| = 1] = 08

Pr[ =1 = 1| = 1] = 09

Pr[ =0 = 1| = 0] = 01

Pr[ =1 = 1| = 0] = 02

 because the causal risk difference among individuals with  = 1 equals

that among individuals with  = 0, that is, 09 − 08 = 01 = 02 − 01.
However, in this second study there is multiplicative effect modification by 

because the causal risk ratio among individuals with  = 1 differs from that

among individuals with  = 0, that is, 0908 = 11 6= 0201 = 2. Since

one cannot generally state that there is, or there is not, effect modification

without referring to the effect measure being used (e.g., risk difference, risk

ratio), some authors use the term effect-measure modification, rather than ef-

fect modification, to emphasize the dependence of the concept on the choice of
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effect measure.

4.2 Stratification to identify effect modification

A stratified analysis is the natural way to identify effect modification. To

determine whether  modifies the causal effect of  on  , one computes the

causal effect of  on  in each level (stratum) of the variable  . In theStratification: the causal effect of

 on  is computed in each stra-

tum of  . For dichotomous  ,

the stratified causal risk differences

are:

Pr[ =1 = 1| = 1]−
Pr[ =0 = 1| = 1]

and

Pr[ =1 = 1| = 0]−
Pr[ =0 = 1| = 0]

previous section, we used the data in Table 4.1 to compute the causal effect

of transplant  on death  in each of the two strata of sex  . Because

the causal effect differed between the two strata (on both the additive and the

multiplicative scale), we concluded that there was (additive and multiplicative)

effect modification by  of the causal effect of  on  .

But the data in Table 4.1 are not the typical data one encounters in real

life. Instead of the two columns with each individual’s counterfactual outcomes

 =1 and  =0, one will find two columns with each individual’s treatment

level  and observed outcome  . How does the unavailability of the counter-

factual outcomes affect the use of stratification to detect effect modification?

The answer depends on the study design.

Consider first an ideal marginally randomized experiment. In Chapter 2

we demonstrated that, leaving aside random variability, the average causal ef-

fect of treatment can be computed using the observed data. For example, the

causal risk difference Pr[ =1 = 1] − Pr[ =0 = 1] is equal to the observed

associational risk difference Pr[ = 1| = 1] − Pr[ = 1| = 0]. The sameTable 4.2

Stratum  = 0
  

Cybele 0 0 0

Saturn 0 0 1

Ceres 0 0 0

Pluto 0 0 0

Vesta 0 1 0

Neptune 0 1 0

Juno 0 1 1

Jupiter 0 1 1

Diana 1 0 0

Phoebus 1 0 1

Latona 1 0 0

Mars 1 1 1

Minerva 1 1 1

Vulcan 1 1 1

Venus 1 1 1

Seneca 1 1 1

Proserpina 1 1 1

Mercury 1 1 0

Juventas 1 1 0

Bacchus 1 1 0

reasoning can be extended to each stratum of the variable because, if treat-

ment assignment was random and unconditional, exchangeability is expected

in every subset of the population. Thus the causal risk difference in women,

Pr[ =1 = 1| = 1]− Pr[ =0 = 1| = 1], is equal to the associational risk

difference in women, Pr[ = 1| = 1 = 1]−Pr[ = 1| = 0 = 1]. And

similarly for men. Thus, to identify effect modification by in an ideal exper-

iment with unconditional randomization, one just needs to conduct a stratified

analysis by computing the association measure in each level of the variable  .

Consider now an ideal randomized experiment with conditional randomiza-

tion. In a population of 40 people, transplant  has been randomly assigned

with probability 075 to those in severe condition ( = 1), and with probabil-

ity 050 to the others ( = 0). The 40 individuals can be classified into two

nationalities: 20 are Greek ( = 1) and 20 are Roman ( = 0). The data on

, , and death  for the 20 Greeks are shown in Table 2.2 (same as Table

3.1). The data for the 20 Romans are shown in Table 4.2. The population

risk under treatment, Pr[ =1 = 1], is 055, and the population risk under no

treatment, Pr[ =0 = 1], is 040. (Both risks are readily calculated by using ei-

ther standardization or IP weighting. We leave the details to the reader.) The

average causal effect of transplant  on death  is therefore 055−040 = 015
on the risk difference scale, and 055040 = 1375 on the risk ratio scale. In

this population, heart transplant increases the mortality risk. As discussed in

the previous chapter, the calculation of the causal effect would have been the

same if the data had arisen from an observational study in which we believe

that conditional exchangeability  
`

| holds.
We now discuss how to conduct a stratified analysis to investigate whether

nationality modifies the effect of  on  . The goal is to compute the causal

effect of  on  in the Greeks, Pr[ =1 = 1| = 1]−Pr[ =0 = 1| = 1], and

in the Romans, Pr[ =1 = 1| = 0]−Pr[ =0 = 1| = 0]. If these two causal
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Fine Point 4.1

Effect in the treated. This chapter is concerned with average causal effects in subsets of the population. One particular

subset is the treated ( = 1). The average causal effect in the treated is not null if Pr[ =1 = 1| = 1] 6= Pr[ =0 =

1| = 1] or, by consistency, if
Pr[ = 1| = 1] 6= Pr[ =0 = 1| = 1]

That is, there is a causal effect in the treated if the observed risk among the treated subjects does not equal the

counterfactual risk had the treated subjects been untreated. The causal risk difference in the treated is Pr[ = 1| =
1]− Pr[ =0 = 1| = 1]. The causal risk ratio in the treated, also known as the standardized morbidity ratio (SMR),
is Pr[ = 1| = 1]Pr[ =0 = 1| = 1]. The causal risk difference and risk ratio in the untreated are analogously

defined by replacing  = 1 by  = 0. Figure 4.1 shows the groups that are compared when computing the effect in the

treated and the effect in the untreated.

The average effect in the treated will differ from the average effect in the population if the distribution of individual

causal effects varies between the treated and the untreated. That is, when computing the effect in the treated, treatment

group  = 1 is used as a marker for the factors that are truly responsible for the modification of the effect between

the treated and the untreated groups. However, even though one could say that there is effect modification by the

pretreatment variable  even if  is only a surrogate (e.g., nationality) for the causal effect modifiers, one would

not say that there is modification of the effect  by treatment  because it sounds nonsensical. See Section 6.6

for a graphical representation of true and surrogate effect modifiers. The bulk of this book is focused on the causal

effect in the population because the causal effect in the treated, or in the untreated, cannot be directly generalized to

time-varying treatments (see Part III).

risk differences differ, we will say that there is additive effect modification by

 . And similarly for the causal risk ratios if interested in multiplicative effect

modification.

The procedure to compute the conditional risks Pr[ =1 = 1| = ] and

Pr[ =0 = 1| = ] in each stratum  has two stages: 1) stratification by

 , and 2) standardization by  (or, equivalently, IP weighting). We computed

the standardized risks in the Greek stratum ( = 1) in Chapter 2: the causal

risk difference was 0 and the causal risk ratio was 1. Using the same procedure

in the Roman stratum ( = 0), we can compute the risks Pr[ =1 = 1| =

0] = 06 and Pr[ =0 = 1| = 0] = 03. (Again we leave the details to the

reader.) Therefore, the causal risk difference is 03 and the causal risk ratio

is 2 in the stratum  = 0. Because these effect measures differ from those

in the stratum  = 1, we say that there is both additive and multiplicative

effect modification by nationality  of the effect of transplant  on death  .

This effect modification is not qualitative because the effect is harmful or null

in both strata  = 0 and  = 1.

We have shown that, in our population, nationality modifies the effect of

heart transplant  on the risk of death  . However, we have made no claims

about the mechanisms involved in such effect modification. In fact, it is possible

that nationality is simply a marker for the factor that is truly responsible for

the effect modification. For example, suppose that the quality of heart surgery

is better in Greece than in Rome. One would then find effect modification

by nationality even though, technically, passport-defined nationality does not

modify the effect. For example, improving the quality of heart surgery in

Rome, or moving Romans to Greece, would eliminate the modification of the

effect by nationality. We refer to nationality as a surrogate effect modifier, and

to quality of care as a causal effect modifier. See Section 6.6 for a graphical

representation of surrogate and causal effect modifiers.
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Similarly, we may say that there is effect modification by time (or by age)

if the effect measure in a certain group of people at one time differs from the

effect measure in the same group at a later time. In this case the strata defined

by the effect modifier do not correspond to different groups of people but to

the same people at different times. Thus our use of the term effect modification

by does not necessarily imply that plays a causal role. To avoid potential

confusions, some authors prefer to use the more neutral term “heterogeneity of

causal effects across strata of ” rather than “effect modification by  .” The

next chapter introduces “interaction,” a concept related to effect modification,

that does attribute a causal role to the variables involved.

Figure 4.1

4.3 Why care about effect modification

There are several related reasons why investigators are interested in identifying

effect modification, and why it is important to collect data on pre-treatment

descriptors  even in randomized experiments.

First, if a factor  modifies the effect of treatment  on the outcome 

then the average causal effect will differ between populations with different

prevalence of  . For example, the average causal effect in the population of

Table 4.1 is harmful in women and beneficial in men. Because there are 50%

of subjects of each sex and the sex-specific harmful and beneficial effects are

equal but of opposite sign, the average causal effect in the entire population

is null. However, had we conducted our study in a population with a greater

proportion of women (e.g., graduating college students), the average causal

effect in the entire population would have been harmful. Other examples: the

effects of exposure to asbestos differ between smokers and nonsmokers, the

effects of antiretroviral therapy differ between relatively healthy and severely

ill HIV-infected individuals, the effects of universal health care differ between

low-income and high-income families. That is, the average causal effect in

a population depends on the distribution of individual causal effects in the

population. There is generally no such a thing as “the average causal effect
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Technical Point 4.1

Computing the effect in the treated. We computed the average causal effect in the population under conditional

exchangeability  
`

| for both  = 0 and  = 1. Computing the average causal effect in the treated only requires
partial exchangeability  =0

`
|. In other words, it is irrelevant whether the risk in the untreated, had they been

treated, equals the risk in those who were actually treated. The average causal effect in the untreated is computed

under the partial exchangeability condition  =1
`

|.
We now describe how to compute the counterfactual risk Pr [  = 1| = 0] via standardization, and a more

general approach to compute the counterfactual mean E[ | = 0] via IP weighting, under the above assumptions of
partial exchangeability:

• Standardization: Pr[  = 1| = 0] is equal to
P


Pr [ = 1| =   = ] Pr [ = | = 0]. See Miettinen

(1973) for a discussion of standardized risk ratios.

• IP weighting: E[ | = 0] is equal to the IP weighted mean
E

∙
 ( = )

 (|) Pr [ = 0|]
¸

E

∙
 ( = )

 (|) Pr [ = 0|]
¸ with weights

Pr [ = 0|]
 (|) . For dichotomous , this equality was derived by Sato and Matsuyama (2003). See Hernán and

Robins (2006) for further details.

of treatment  on outcome  (period)”, but “the average causal effect of

treatment  on outcome  in a population with a particular mix of causal

effect modifiers.”

In our example, the effect of heart transplant  on risk of death  differs be-

tween men and women, and between Romans and Greeks. Thus our knowledge

about the average causal effect in this population may not be transportable to

other populations with a different distribution of the effect modifiers sex and

nationality. We then say that the average causal effect is not transportable orSome refer to lack of transportabil-

ity as lack of external validity. generalizable to other populations.

The extrapolation of causal effects computed in one population to a second

population, which is also referred to as the transportability of causal inferences

across populations, can be improved by restricting our attention to the av-

erage causal effects in the strata defined by the effect modifiers rather than

to the average effect in the population. Unfortunately, there is no guaran-

tee that this conditional effect measures accurately quantify the conditionalA setting in which generalizabil-

ity may not be an issue: Smith

and Pell (2003) could not iden-

tify any major modifiers of the ef-

fect of parachute use on death af-

ter “gravitational challenge” (e.g.,

jumping from an airplane at high al-

titude). They concluded that con-

ducting randomized trials of para-

chute use restricted to a particu-

lar group of people would not com-

promise the transportability of the

findings to other groups.

effects in the second population. There could be other unmeasured, or un-

known, causal effect modifiers whose conditional distribution varies between

the two populations. See also Fine Point 4.2. Transportability of causal effects

is an assumption that relies heavily on subject-matter knowledge. For exam-

ple, most experts would agree that the health effects (on either the additive

or multiplicative scale) of increasing a household’s annual income by $100 in

Niger cannot be generalized to the Netherlands, but most experts would agree

that the health effects of use of cholesterol-lowering drugs in Europeans can be

generalized to Canadians.

Second, evaluating the presence of effect modification is helpful to identify

the groups of subjects that would benefit most from an intervention. In our

example of Table 4.1, the average causal effect of treatment  on outcome 
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was null. However, treatment  had a beneficial effect in men ( = 0), and a

harmful effect in women ( = 1). If a physician knew that there is qualitative

effect modification by sex then, in the absence of additional information, she

would treat the next patient only if he happens to be a man. The situation is

slightly more complicated when, as in our second example, there is multiplica-

tive, but not additive, effect modification. Here treatment reduces the risk

of the outcome by 10% in subjects with  = 0 and also by 10% in subjects

with  = 1, i.e., there is no additive effect modification by  because the

causal risk difference is 01 in all levels of  . Thus, an intervention to treat

all patients would be equally effective in reducing risk in both strata of  ,

despite the fact that there is multiplicative effect modification. Additive, but

not multiplicative, effect modification is the appropriate scale to identify the

groups that will benefit most from intervention. To see this, note that an effect

modifier on either the additive or the multiplicative scale is guaranteed to exist

when the sharp causal null hypothesis does not hold (i.e., when the treatment

has a non-null effect on some subjects’ outcomes). However, in the absence ofSeveral authors (e.g., Blot and

Day, 1979; Rothman et al., 1980;

Saracci, 1980) have referred to ad-

ditive effect modification as the one

of interest for public health pur-

poses.

additive effect modification, it is usually not very helpful to learn that there is

multiplicative effect modification. In our second example, the presence of mul-

tiplicative effect modification follows from the mathematical fact that, because

the risk under no treatment in the stratum  = 1 equals 08, the maximum

possible causal risk ratio in the  = 1 stratum is 108 = 125. Thus the

causal risk ratio in the stratum  = 1 is guaranteed to differ from the causal

risk ratio of 2 in the  = 0 stratum. In these situations, the presence of mul-

tiplicative effect modification is simply the consequence of different risk under

no treatment Pr[ =0 = 1| = ] across levels of  . In these cases, it is

more informative to report the risk differences (and, even better, the absolute

risks) than the risk ratios.

Finally, the identification of effect modification may help understand the

biological, social, or other mechanisms leading to the outcome. For example,

a greater risk of HIV infection in uncircumcised compared with circumcised

men may provide new clues to understand the disease. The identification of

effect modification may be a first step towards characterizing the interactions

between two treatments. In fact, the terms “effect modification” and “inter-

action” are sometimes used as synonymous in the scientific literature. The

next chapter describes “interaction” as a causal concept that is related to, but

different from, effect modification.

4.4 Stratification as a form of adjustment

Until this chapter, our only goal was to compute the average causal effect in

the entire population. In the absence of marginal randomization, achieving

this goal requires adjustment for the variables  that ensure conditional ex-

changeability of the treated and the untreated. For example, in Chapter 2 we

determined that the average causal effect of heart transplant  on mortality

 was null, that is, the causal risk ratio Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
= 1.

We used the data in Table 2.2 to adjust for the prognostic factor  via both

standardization and IP weighting.

The present chapter adds another potential goal to the analysis: to identify

effect modification by variables  . To achieve this goal, we need to stratify

by  before adjusting for . For example, in this chapter we stratified by

nationality  before adjusting for the prognostic factor  to determine that
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Fine Point 4.2

Transportability. Causal effects estimated in one population (the study population) are often intended to make

decisions in another population (the target population). Suppose we have correctly estimated the average causal effect

of treatment  in our study population under exchangeability, positivity, and consistency. Will the effect be the same

in the target population? That is, can we “transport” the effect from one population to the other? The answer to this

question depends on the characteristics of both populations. Specifically, transportability of effects from one population

to another may be justified if the following characteristics are similar between the two populations:

• Effect modification: The causal effect of treatment  may differ across individuals with different susceptibility

to the outcome. For example, if women are more susceptible to the effects of treatment than men, we say that

sex is an effect modifier. The distribution of effect modifiers in a population will generally affect the magnitude

of the causal effect of treatment in that population. Discussions about generalizability of causal effects are often

focused on effect modification.

• Interference: In many settings treating one individual may indirectly affect the treatment level of other individuals
in the population. For example, a socially and physically active individual may convince his friends to get treated,

and thus an intervention on that individual may be more effective than an intervention on a socially isolated

individual. The distribution of contact patterns among individuals may affect the magnitude of the causal effect

of treatment  in a population. See Halloran and Struchiner (1995), Sobel (2006), Rosenbaum (2007), and

Hudgens and Halloran (2009) for a more detailed discussion of the role of interference in the definition of causal

effects.

• Versions of treatment: The causal effect of treatment  depends on the distribution of versions of treatment

in the population. If this distribution differs between the study population and the target population, then the

magnitude of the causal effect of treatment  will differ too.

Note that the transportability of causal inferences across populations may be improved by restricting our attention

to the average causal effects in the strata defined by the effect modifiers (rather than to the average effect), or by using

the stratum-specific effects in the study population to reconstruct the average causal effect in the target population. For

example, the four stratum-specific effect measures (Roman women, Greek women, Roman men, and Greek men) in our

population can be combined in a weighted average to reconstruct the average causal effect in another population with a

different mix of sex and nationality. The weight assigned to each stratum-specific measure is the proportion of subjects

in that stratum in the second population. However, there is no guarantee that this reconstructed effect will coincide

with the true effect in the target population because of possible unmeasured effect modifiers, and between-populations

differences in interference patterns and distribution of versions of treatment.

the average causal effect of heart transplant  on mortality  differed between

Greeks and Romans. In summary, standardization (or IP weighting) is used

to adjust for  and stratification is used to identify effect modification by  .

But stratification is not always used to identify effect modification by  .

In practice stratification is often used as an alternative to standardization (and

IP weighting) to adjust for . In fact, the use of stratification as a method

to adjust for  is so widespread that many investigators consider the terms

“stratification” and “adjustment” as synonymous. For example, suppose you

ask an epidemiologist to adjust for the prognostic factor  to compute the effect

of heart transplant  on mortality  . Chances are that she will immediately

split Table 2.2 into two subtables–one restricted to subjects with  = 0, the

other to subjects with  = 1–and would provide the effect measure (say,Under conditional exchangeability

given , the risk ratio in the subset

 =  measures the average causal

effect in the subset  =  because,

if  
`

|, then
Pr [ = 1| =   = 0]=

Pr [  = 1| = 0]

the risk ratio) in each of them. That is, she would calculate the risk ratios

Pr [ = 1| = 1  = ] Pr [ = 1| = 0  = ] = 1 for both  = 0 and  = 1.
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These two stratum-specific associational risk ratios can be endowed with a

causal interpretation under conditional exchangeability given : they measure

the average causal effect in the subsets of the population defined by  = 0

and  = 1, respectively. They are conditional effect measures. In contrast

the risk ratio of 1 that we computed in Chapter 2 was a marginal (uncondi-

tional) effect measure. In this particular example, all three risk ratios–the

two conditional ones and the marginal one–happen to be equal because there

is no effect modification by . Stratification necessarily results in multiple

stratum-specific effect measures (one per stratum defined by the variables ).

Each of them quantifies the average causal effect in a nonoverlapping subset

of the population but, in general, none of them quantifies the average causal

effect in the entire population. Therefore, we did not consider stratification

when describing methods to compute the average causal effect of treatment in

the population in Chapter 2. Rather, we focused on standardization and IP

weighting.

In addition, unlike standardization and IP weighting, adjustment via strat-

ification requires computing the effect measures in subsets of the population

defined by a combination of all variables  that are required for conditional

exchangeability. For example, when using stratification to estimate the effect

of heart transplant in the population of Tables 2.2 and 4.2, one must compute

the effect in Romans with  = 1, in Greeks with  = 1, in Romans with  = 0,

and in Greeks with  = 0; but one cannot compute the effect in Romans by

simply computing the association in the stratum  = 0 because nationality

 , by itself, is insufficient to guarantee conditional exchangeability. That is,Robins (1986, 1987) described the

conditions under which stratum-

specific effect measures for time-

varying treatments will not have a

causal interpretation even if in the

presence of exchangeability, positiv-

ity, and well-defined interventions.

the use of stratification forces one to evaluate effect modification by all vari-

ables  required to achieve conditional exchangeability, regardless of whether

one is interested in such effect modification. In contrast, stratification by 

followed by IP weighting or standardization to adjust for  allows one to deal

with exchangeability and effect modification separately, as described above.

Other problems associated with the use of stratification are noncollapsibility

of certain effect measures (see Fine Point 4.3) and inappropriate adjustment

when, in the case for time-varying treatments, it is necessary to adjust for

time-varying variables  that are affected by prior treatment (see Part III).Stratification requires positivity in

addition to exchangeability: the

causal effect cannot be computed

in subsets  =  in which there are

only treated, or untreated, individ-

uals.

Sometimes investigators compute the causal effect in only some of the strata

defined by the variables . That is, no stratum-specific effect measure is com-

puted for some strata. This form of stratification is known as restriction.

Stratification is simply the application of restriction to several comprehensive

and mutually exclusive subsets of the population. An important use of restric-

tion is the preservation of positivity (see Chapter 3).

4.5 Matching as another form of adjustment

Matching is another adjustment method. The goal of matching is to construct a

subset of the population in which the variables  have the same distribution in

both the treated and the untreated. As an example, take our heart transplant

example in Table 2.2 in which the variable  is sufficient to achieve conditionalOur discussion on matching applies

to cohort studies only. Under study

designs not yet discussed (i.e., case-

control studies), matching is used

for purposes other than adjustment,

and thus needs to be followed by

some form of stratification to esti-

mate conditional (stratum-specific)

effect measures.

exchangeability. For each untreated individual in non critical condition ( =

0  = 0) randomly select a treated individual in non critical condition ( =

1  = 0), and for each untreated individual in critical condition ( = 0  = 1)

randomly select a treated individual in critical condition ( = 1  = 1). We

refer to each untreated individual and her corresponding treated individual as a
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matched pair, and to the variable  as the matching factor. Suppose we formed

the following 7 matched pairs: Rheia-Hestia, Kronos-Poseidon, Demeter-Hera,

Hades-Zeus for  = 0 and Artemis-Ares, Apollo-Aphrodite, Leto-Hermes for

 = 1. All the untreated, but only a sample of treated, in the population

were selected. In this subset of the population comprised of matched pairs, the

proportion of individuals in critical condition ( = 1) is the same, by design,

in the treated and in the untreated (37).

To construct our matched population we replaced the treated in the pop-

ulation by a subset of the treated in which the matching factor  had the

same distribution as that in the untreated. Under the assumption of condi-

tional exchangeability given , the result of this procedure is (unconditional)

exchangeability of the treated and the untreated in the matched population.

Because the treated and the untreated are exchangeable in the matched popu-

lation, their average outcomes can be directly compared: the risk in the treated

is 37, the risk in the untreated is 37, and hence the causal risk ratio is 1. Note

that matching ensures positivity in the matched population because strata with

only treated, or untreated, individuals are excluded from the analysis.

Often one chooses the group with fewer subjects (the untreated in our

example) and uses the other group (the treated in our example) to find their

matches. The chosen group defines the subpopulation on which the causal

effect is being computed. In the previous paragraph we computed the effect in

the untreated. In settings with fewer treated than untreated individuals across

all strata of , we generally compute the effect in the treated. Also, matching

needs not be one-to-one (matching pairs), but it can be one-to-many (matching

sets).

In many applications,  is a vector of several variables. Then, for each

untreated individual in a given stratum defined by a combination of values of

all the variables in , we would have randomly selected one (or several) treated

individual(s) from the same stratum.

Matching can be used to create a matched population with any chosenAs the number of matching fac-

tors increases, so does the proba-

bility that no exact matches exist

for an individual. There is a vast

literature, beyond the scope of this

book, on how to find approximate

matches in those settings.

distribution of , not just the distribution in the treated or the untreated. The

distribution of interest can be achieved by individual matching, as described

above, or by frequency matching. An example of the latter is a study in which

one randomly selects treated subjects in such a way that 70% of them have

 = 1, and then repeats the same procedure for the untreated.

Because the matched population is a subset of the original study population,

the distribution of causal effect modifiers in the matched study population

will generally differ from that in the original, unmatched study population, as

discussed in the next section.

4.6 Effect modification and adjustment methods

Standardization, IP weighting, stratification/restriction, and matching are dif-

ferent approaches to estimate average causal effects, but they estimate differ-Part II describes how standardiza-

tion, IP weighting, and stratifica-

tion can be used in combination

with parametric or semiparametric

models. For example, standard re-

gression models are a form of strati-

fication in which the association be-

tween treatment and outcome is es-

timated within levels of all the other

covariates in the model.

ent types of causal effects. These four approaches can be divided into two

groups according to the type of effect they estimate: standardization and IP

weighting can be used to compute either marginal or conditional effects, strat-

ification/restriction and matching can only be used to compute conditional

effects in certain subsets of the population. All four approaches require ex-

changeability, positivity, and consistency, but the subsets of the population in

which these conditions need to hold depend on the causal effect of interest. For



Effect modification 51

Technical Point 4.2

Pooling of stratum-specific effect measures. So far we have focused on the conceptual, non statistical, aspects of

causal inference by assuming that we work with the entire population rather than with a sample from it. Thus we talk

about computing causal effects rather than about (consistently) estimating them. In the real world, however, we can

rarely compute causal effects in the population. We need to estimate them from samples, and thus obtaining reasonably

narrow confidence intervals around our estimated effect measures is an important practical concern.

When dealing with stratum-specific effect measures, one commonly used strategy to reduce the variability of the

estimates is to combine all stratum-specific effect measures into one pooled stratum-specific effect measure. The idea is

that, if the effect measure is the same in all strata (i.e., if there is no effect-measure modification), then the pooled effect

measure will be a more precise estimate of the common effect measure. Several methods (e.g., Woolf, Mantel-Haenszel,

maximum likelihood) yield a pooled estimate, sometimes by computing a weighted average of the stratum-specific effect

measures with weights chosen to reduce the variability of the pooled estimate. Greenland and Rothman (2008) review

some commonly used methods for stratified analysis. Regression models can also be used to compute pooled effect

measures. To do so, the model needs to include all possible product (“interaction”) terms between all covariates , but

no product terms between treatment  and covariates . That is, the model must be saturated (see Chapter 11) with

respect to .

The main goal of pooling is to obtain a narrower confidence interval around the common stratum-specific effect

measure, but the pooled effect measure is still a conditional effect measure. In our heart transplant example, the pooled

stratum-specific risk ratio (Mantel-Haenszel method) was 088 for the outcome . This result is only meaningful if

the stratum-specific risk ratios 2 and 05 are indeed estimates of the same stratum-specific causal effect. For example,

suppose that the causal risk ratio is 09 in both strata but, because of the small sample size, we obtained estimates of 05

and 20. In that case, pooling would be appropriate and the Mantel-Haenszel risk ratio would be closer to the truth than

either of the stratum-specific risk ratios. Otherwise, if the causal stratum-specific risk ratios are truly 05 and 20, then

pooling makes little sense and the Mantel-Haenszel risk ratio could not be easily interpreted. In practice, it is not always

obvious to determine whether the heterogeneity of the effect measure across strata is due to sampling variability or to

effect-measure modification. The finer the stratification, the greater the uncertainty introduced by random variability.

example, to compute the conditional effect among individuals with  = , any

of the above methods requires exchangeability in that subset only; to estimate

the marginal effect in the entire population, IP weighting and standardization

require exchangeability in all levels of .Table 4.3
  

Rheia 0 0 0

Kronos 0 0 1

Demeter 0 0 0

Hades 0 0 0

Hestia 0 1 0

Poseidon 0 1 0

Hera 0 1 1

Zeus 0 1 1

Artemis 1 0 1

Apollo 1 0 1

Leto 1 0 0

Ares 1 1 1

Athena 1 1 1

Hephaestus 1 1 1

Aphrodite 1 1 0

Cyclope 1 1 0

Persephone 1 1 0

Hermes 1 1 0

Hebe 1 1 0

Dionysus 1 1 0

In the absence of effect modification, the effect measures computed via

these four approaches will be equal. For example, we concluded that the av-

erage causal effect of heart transplant  on mortality  was null both in the

entire population of Table 2.2 (standardization and IP weighting), in the sub-

sets of the population in critical condition  = 1 and non critical condition

 = 0 (stratification), and in the untreated (matching). All methods resulted

in a causal risk ratio equal to 1. However, the effect measures computed via

these four approaches will not generally be equal. To illustrate how the ef-

fects may vary, let us compute the effect of heart transplant  on high blood

pressure  (1: yes, 0 otherwise) using the data in Table 4.3. We assume that

exchangeability 
`

| and positivity hold. We use the risk ratio scale for
no particular reason.

Standardization and IP weighting yield the average causal effect in the

entire population Pr[=1 = 1]Pr[=0 = 1] = 08 (these and the following

calculations are left to the reader). Stratification yields the conditional causal

risk ratios Pr[=1 = 1| = 0]Pr[=0 = 1| = 0] = 20 in the stratum  =

0, and Pr[=1 = 1| = 1]Pr[=0 = 1| = 1] = 05 in the stratum  = 1.

Matching, using the matched pairs selected in the previous section, yields the
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causal risk ratio in the untreated Pr[=1 = 1| = 0]Pr[ = 1| = 0] = 10.
We have computed four causal risk ratios and have obtained four different

numbers: 08 20 05 and 10. All of them are correct. Leaving aside random

variability (see Technical Point 4.2), the explanation of the differences is qual-

itative effect modification: Treatment doubles the risk among individuals in

noncritical condition ( = 0, causal risk ratio 20) and halves the risk among in-

dividuals in critical condition ( = 1, causal risk ratio 05). The average causal

effect in the population (causal risk ratio 08) is beneficial because there are

more individuals in critical condition than in noncritical condition. The causal

effect in the untreated is null (causal risk ratio 10), which reflects the larger

proportion of individuals in noncritical condition in the untreated compared

with the entire population. This example highlights the primary importance

of specifying the population, or the subset of a population, to which the effect

measure corresponds.

The previous chapter argued that a well defined causal effect is a prereq-

uisite for meaningful causal inference. This chapter argues that a well charac-Table 4.4

  

Rheia 1 0 0

Demeter 1 0 0

Hestia 1 0 0

Hera 1 0 0

Artemis 1 0 1

Leto 1 1 0

Athena 1 1 1

Aphrodite 1 1 1

Persephone 1 1 0

Hebe 1 1 1

Kronos 0 0 0

Hades 0 0 0

Poseidon 0 0 1

Zeus 0 0 1

Apollo 0 0 0

Ares 0 1 1

Hephaestus 0 1 1

Cyclope 0 1 1

Hermes 0 1 0

Dionysus 0 1 1

terized target population is another such prerequisite. Both prerequisites are

automatically present in experiments that compare two or more interventions

in a population that meets certain a priori eligibility criteria. However, these

prerequisites cannot be taken for granted in observational studies. Rather, in-

vestigators conducting observational studies need to explicitly define the causal

effect of interest and the subset of the population in which the effect is being

computed. Otherwise, misunderstandings might easily arise when effect mea-

sures obtained via different methods are different. In our example above, one

investigator who used IP weighting (and computed the effect in the entire

population) and another one who used matching (and computed the effect in

the untreated) need not engage in a debate about the superiority of one an-

alytic approach over the other. Their discrepant effect measures result from

the different causal question asked by each investigator rather than from their

choice of analytic approach. In fact, the second investigator could have used

IP weighting to compute the effect in the untreated or in the treated (see

Technical Point 4.1).

A final note. Stratification can be used to compute average causal effects

in subsets of the population, but not individual (subject-specific) effects. We

cannot generally compare the mortality outcome had Zeus been treated with

the mortality outcome had he been untreated. Estimating subject-specific ef-

fects would require subject-specific exchangeability, e.g., for a treated subject

we need a perfectly exchangeable untreated subject. Because the assumption

of individual exchangeability is generally untenable, adjustment methods re-

quire only exchangeability between groups (i.e., the treated and the untreated).

As a result, only average causal effects in groups–populations or subsets of

populations–can be computed in general.
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Fine Point 4.3

Collapsibility and the odds ratio. In the absence of effect modification by  , the causal risk ratio in the entire pop-

ulation, Pr[ =1 = 1]Pr[ =0 = 1] is equal to the conditional causal risk ratios Pr[ =1 = 1| = ]Pr[ =0 =

1| = ] in every stratum  of  . More generally, the causal risk ratio is a weighted average of the stratum-specific

risk ratios. For example, if the causal risk ratios in the strata = 1 and = 0 were equal to 2 and 3, respectively, then

the causal risk ratio in the population would be greater than 2 and less than 3. That the value of the causal risk ratio

(and the causal risk difference) in the population is always constrained by the range of values of the stratum-specific

risk ratios is not only obvious but also a desirable characteristic of any effect measure.

Now consider a hypothetical effect measure (other than the risk ratio or the risk difference) such that the population

effect measure were not a weighted average of the stratum-specific measures. That is, the population effect measure

would not necessarily lie inside of the range of values of the stratum-specific effect measures. Such effect measure would

be an odd one. The odds ratio (pun intended) is such an effect measure, as we now discuss.

Suppose the data in Table 4.4 were collected to compute the causal effect of altitude  on depression  in a

population of 20 individuals. The treatment  is 1 if the subject moved to a high altitude residence (on the top of

Mount Olympus), 0 otherwise; the outcome  is 1 if the subject developed depression, 0 otherwise; and  is 1 if the

subject was female, 0 if male. The decision to move was random, i.e., those more prone to develop depression were as

likely to move as the others; effectively  
`

. Therefore the risk ratio Pr[ = 1| = 1]Pr[ = 1| = 0] = 23 is
the causal risk ratio in the population, and the odds ratio

Pr[ = 1| = 1]Pr[ = 0| = 1]
Pr[ = 1| = 0]Pr[ = 0| = 0] = 54 is the causal odds

ratio
Pr[ =1 = 1]Pr[ =1 = 0]

Pr[ =0 = 1]Pr[ =0 = 0]
in the population. The risk ratio and the odds ratio measure the same causal effect

on different scales.

Let us now compute the sex-specific causal effects on the risk ratio and odds ratio scales. The (conditional) causal

risk ratio Pr[ = 1| =  = 1]Pr[ = 1| =  = 0] is 2 for men ( = 0) and 3 for women ( = 1). The

(conditional) causal odds ratio
Pr[ = 1| =  = 1]Pr[ = 0| =  = 1]

Pr[ = 1| =  = 0]Pr[ = 0| =  = 0]
is 6 for men ( = 0) and 6 for

women ( = 1). The causal risk ratio in the population, 23, is in between the sex-specific causal risk ratios 2 and 3.

In contrast, the causal odds ratio in the population, 54, is smaller (i.e., closer to the null value) than both sex-specific

odds ratios, 6. The causal effect, when measured on the odds ratio scale, is bigger in each half of the population than

in the entire population. In general, the population causal odds ratio can be closer to the null value than any of the

non-null stratum-specific causal odds ratios when  is associated with  (Miettinen and Cook, 1981).

We say that an effect measure is collapsible when the population effect measure can be expressed as a weighted

average of the stratum-specific measures. In follow-up studies the risk ratio and the risk difference are collapsible effect

measures, but the odds ratio–or the rarely used odds difference–is not (Greenland 1987). The noncollapsibility of the

odds ratio, which is a special case of Jensen’s inequality (Samuels 1981), may lead to counterintuitive findings like those

described above. The odds ratio is collapsible under the sharp null hypothesis–both the conditional and unconditional

effect measures are then equal to the null value–and it is approximately collapsible–and approximately equal to the

risk ratio–when the outcome is rare (say,  10%) in every stratum of a follow-up study.

One important consequence of the noncollapsibility of the odds ratio is the logical impossibility of equating “lack of

exchangeability” and “change in the conditional odds ratio compared with the unconditional odds ratio.” In our example,

the change in odds ratio was about 10% (1 − 654) even though the treated and the untreated were exchangeable.
Greenland, Robins, and Pearl (1999) reviewed the relation between noncollapsibility and lack of exchangeability.
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Chapter 5
INTERACTION

Consider again a randomized experiment to answer the causal question “does one’s looking up at the sky make

other pedestrians look up too?” We have so far restricted our interest to the causal effect of a single treatment

(looking up) in either the entire population or a subset of it. However, many causal questions are actually about

the effects of two or more simultaneous treatments. For example, suppose that, besides randomly assigning your

looking up, we also randomly assign whether you stand in the street dressed or naked. We can now ask questions

like: what is the causal effect of your looking up if you are dressed? And if you are naked? If these two causal

effects differ we say that the two treatments under consideration (looking up and being dressed) interact in bringing

about the outcome.

When joint interventions on two or more treatments are feasible, the identification of interaction allows one

to implement the most effective interventions. Thus understanding the concept of interaction is key for causal

inference. This chapter provides a formal definition of interaction between two treatments, both within our

already familiar counterfactual framework and within the sufficient-component-cause framework.

5.1 Interaction requires a joint intervention

Suppose that in our heart transplant example, individuals were assigned to

receiving either a multivitamin complex ( = 1) or no vitamins ( = 0)

before being assigned to either heart transplant ( = 1) or no heart trans-

plant ( = 0). We can now classify all individuals into 4 treatment groups:

vitamins-transplant ( = 1,  = 1), vitamins-no transplant ( = 1,  = 0),

no vitamins-transplant ( = 0,  = 1), and no vitamins-no transplant ( = 0,

 = 0). For each individual, we can now imagine 4 potential or counterfac-

tual outcomes, one under each of these 4 treatment combinations:  =1=1,

 =1=0,  =0=1, and  =0=0. In general, an individual’s counterfactual

outcome   is the outcome that would have been observed if we had inter-

vened to set the individual’s values of  and  to  and , respectively. We

refer to interventions on two or more treatments as joint interventions.

We are now ready to provide a definition of interaction within the coun-

terfactual framework. There is interaction between two treatments  and 

if the causal effect of  on  after a joint intervention that set  to 1 differs

from the causal effect of  on  after a joint intervention that set  to 0. For

example, there would be an interaction between transplant  and vitamins

 if the causal effect of transplant on survival had everybody taken vitamins

were different from the causal effect of transplant on survival had nobody taken

vitamins.

When the causal effect is measured on the risk difference scale, we say that

there is interaction between  and  on the additive scale if

Pr
£
 =1=1 = 1

¤−Pr £ =0=1 = 1
¤ 6= Pr £ =1=0 = 1

¤−Pr £ =0=0 = 1
¤


For example, suppose the causal risk difference for transplant  when every-

body receives vitamins, Pr
£
 =1=1 = 1

¤− Pr £ =0=1 = 1
¤
, were 01, and
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that the causal risk difference for transplant  when nobody receives vita-

mins, Pr
£
 =1=0 = 1

¤ − Pr £ =0=0 = 1
¤
, were 02. We say that there

is interaction between  and  on the additive scale because the risk dif-

ference Pr
£
 =1=1 = 1

¤ − Pr £ =0=1 = 1
¤
is less than the risk difference

Pr
£
 =1=0 = 1

¤ − Pr £ =0=0 = 1
¤
. It can be easily shown that this in-

equality implies that the causal risk difference for vitamins  when everybody

receives a transplant, Pr
£
 =1=1 = 1

¤− Pr £ =1=0 = 1
¤
, is also less than

the causal risk difference for vitamins  when nobody receives a transplant

, Pr
£
 =0=1 = 1

¤−Pr £ =0=0 = 1
¤
. That is, we can equivalently define

interaction between  and  on the additive scale as

Pr
£
 =1=1 = 1

¤−Pr £ =1=0 = 1
¤ 6= Pr £ =0=1 = 1

¤−Pr £ =0=0 = 1
¤


Let us now review the difference between interaction and effect modifica-

tion. As described in the previous chapter, a variable  is a modifier of the

effect of  on  when the average causal effect of  on  varies across levels

of  . Note the concept of effect modification refers to the causal effect of

, not to the causal effect of  . For example, sex was an effect modifier for

the effect of heart transplant in Table 4.1, but we never discussed the effect of

sex on death. Thus, when we say that  modifies the effect of  we are not

considering  and  as variables of equal status, because only  is consid-

ered to be a variable on which we could hypothetically intervene. That is, the

definition of effect modification involves the counterfactual outcomes  , not

the counterfactual outcomes  . In contrast, the definition of interaction

between  and  gives equal status to both treatments  and , as reflected

by the two equivalent definitions of interaction shown above. The concept of

interaction refers to the joint causal effect of two treatments  and , and

thus involves the counterfactual outcomes   under a joint intervention.

5.2 Identifying interaction

In previous chapters we have described the conditions that are required to

identify the average causal effect of a treatment  on an outcome  , either

in the entire population or in a subset of it. The three key identifying condi-

tions were exchangeability, positivity, and consistency. Because interaction is

concerned with the joint effect of two (or more) treatments  and , identi-

fying interaction requires exchangeability, positivity, and consistency for both

treatments.

Suppose that vitamins  were randomly, and unconditionally, assigned by

the investigators. Then positivity and consistency hold, and the treated  = 1

and the untreated  = 0 are expected to be exchangeable. That is, the risk

that would have been observed if all subjects had been assigned to transplant

 = 1 and vitamins  = 1 equals the risk that would have been observed

if all subjects who received  = 1 had been assigned to transplant  = 1.

Formally, the marginal risk Pr
£
 =1=1 = 1

¤
is equal to the conditional risk

Pr
£
 =1 = 1| = 1¤. As a result, we can rewrite the definition of interaction

between  and  on the additive scale as

Pr
£
 =1 = 1| = 1¤− Pr £ =0 = 1| = 1¤

6= Pr £ =1 = 1| = 0¤− Pr £ =0 = 1| = 0¤ 
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Technical Point 5.1

Interaction on the additive and multiplicative scales. The equality of causal risk differences Pr
£
 =1=1 = 1

¤−
Pr
£
 =0=1 = 1

¤
= Pr

£
 =1=0 = 1

¤− Pr £ =0=0 = 1
¤
can be rewritten as

Pr
£
 =1=1 = 1

¤
=
©
Pr
£
 =1=0 = 1

¤− Pr £ =0=0 = 1
¤ª
+Pr

£
 =0=1 = 1

¤


By subtracting Pr
£
 =0=0 = 1

¤
from both sides of the equation, we get Pr

£
 =1=1 = 1

¤− Pr £ =0=0 = 1
¤
=©

Pr
£
 =1=0 = 1

¤− Pr £ =0=0 = 1
¤ª
+
©
Pr
£
 =0=1 = 1

¤− Pr £ =0=0 = 1
¤ª



This equality is a compact way to show that treatments  and  have equal status in the definition of interaction.

When the above equality holds, we say that there is no interaction between  and  on the additive scale, and we

say that the causal risk difference Pr
£
 =1=1 = 1

¤− Pr £ =0=0 = 1
¤
is additive because it can be written as the

sum of the causal risk differences that measure the effect of  in the absence of  and the effect of  in the absence of

. Conversely, there is interaction between  and  on the additive scale if Pr
£
 =1=1 = 1

¤−Pr £ =0=0 = 1
¤ 6=©

Pr
£
 =1=0 = 1

¤− Pr £ =0=0 = 1
¤ª
+
©
Pr
£
 =0=1 = 1

¤− Pr £ =0=0 = 1
¤ª



The interaction is superadditive if the ‘not equal to’ (6=) symbol can be replaced by a ‘greater than’ () symbol. The
interaction is subadditive if the ‘not equal to’ (6=) symbol can be replaced by a ‘less than’ () symbol.

Analogously, one can define interaction on the multiplicative scale when the effect measure is the causal risk ratio,

rather than the causal risk difference. We say that there is interaction between  and  on the multiplicative scale if

Pr
£
 =1=1 = 1

¤
Pr [ =0=0 = 1]

6= Pr
£
 =1=0 = 1

¤
Pr [ =0=0 = 1]

× Pr
£
 =0=1 = 1

¤
Pr [ =0=0 = 1]



The interaction is supermultiplicative if the ‘not equal to’ (6=) symbol can be replaced by a ‘greater than’ () symbol.
The interaction is submultiplicative if the ‘not equal to’ (6=) symbol can be replaced by a ‘less than’ () symbol.

which is exactly the definition of modification of the effect of  by  on the

additive scale. In other words, when treatment  is randomly assigned, then

the concepts of interaction and effect modification coincide. The methods

described in Chapter 4 to identify modification of the effect of  by  can

now be applied to identify interaction of  and  by simply replacing the effect

modifier  by the treatment .

Now suppose treatment  was not assigned by investigators. To assess the

presence of interaction between  and , one still needs to compute the four

marginal risks Pr [  = 1]. In the absence of marginal randomization, these

risks can be computed for both treatments  and , under the usual identifying

assumptions, by standardization or IP weighting conditional on the measured

covariates. An equivalent way of conceptualizing this problem follows: rather

than viewing  and  as two distinct treatments with two possible levels (1

or 0) each, one can view  as a combined treatment with four possible levels

(11, 01, 10, 00). Under this conceptualization the identification of interaction

between two treatments is not different from the identification of the causal

effect of one treatment that we have discussed in previous chapters. The same

methods, under the same identifiability conditions, can be used. The only

difference is that now there is a longer list of values that the treatment of

interest can take, and therefore a greater number of counterfactual outcomes.

Sometimes one may be willing to assume (conditional) exchangeability for
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treatment  but not for treatment , e.g., when estimating the causal effect

of  in subgroups defined by  in a randomized experiment. In that case, one

cannot generally assess the presence of interaction between  and , but can

still assess the presence of effect modification by . This is so because one

does not need any identifying assumptions involving  to compute the effect

of  in each of the strata defined by . In the previous chapter we used the

notation  (rather than ) for variables for which we are not willing to make

assumptions about exchangeability, positivity, and consistency. For example,

we concluded that the effect of transplant  was modified by nationality  ,

but we never required any identifying assumptions for the effect of  because

we were not interested in using our data to compute the causal effect of  on

 . Yet we use our subject-matter knowledge to argue that nationality does

not have a causal effect on any individual’s  . That  does not act on the

outcome implies that it does not interact with –no action, no interaction.

But  is a modifier of the effect of  on  because  is correlated with (e.g.,

it is a proxy for) an unidentified variable that actually has an effect on  and

interacts with . Thus there can be modification of the effect of  by anotherInteraction between  and  with-

out modification of the effect of

 by  is also logically possible,

though probably rare, because it re-

quires dual effects of  and exact

cancellations (VanderWeele 2009).

variable without interaction between  and that variable.

In the above paragraphs we have argued that a sufficient condition for

identifying interaction between two treatments  and  is that exchangeability,

positivity, and consistency are all satisfied for the joint treatment () with

the four possible values (0 0), (0 1), (1 0), and 1 1). Then standardization or

IP weighting can be used to estimate the joint effects of the two treatments

and thus to evaluate interaction between them. In Part III, we show that this

condition is not necessary when the two treatments occur at different times.

For the remainder of Part I (except this chapter) and most of Part II, we will

focus on the causal effect of a single treatment .

Up to here, we used deterministic counterfactuals for simplicity even though

nothing hinged on that. In contrast, the following sections of this chapter

review several concepts related to interaction that do actually require that

counterfactuals are assumed to be deterministic, and that treatments and out-

comes are dichotomous. This oversimplification, though not necessary, makes

the study of these concepts manageable and helps clarify some issues that

are often misunderstood. As a downside, the oversimplification impedes the

practical application of these concepts to many realistic settings.

5.3 Counterfactual response types and interaction

Individuals can be classified in terms of their counterfactual responses. For

example, in Table 4.1 (same as Table 1.1), there are four types of people:

the “doomed” who will develop the outcome regardless of what treatment

they receive (Artemis, Athena, Persephone, Ares), the “immune” who will

not develop the outcome regardless of what treatment they receive (Deme-

ter, Hestia, Hera, Hades), the “preventative” who will develop the outcome

only if untreated (Hebe, Kronos, Poseidon, Apollo, Hermes, Dyonisus), andTable 5.1

Type  =0  =1

Doomed 1 1

Preventative 1 0

Causative 0 1

Immune 0 0

the “causative” who will develop the outcome only if treated (Rheia, Leto,

Aphrodite, Zeus, Hephaestus, Cyclope). Each combination of counterfactual

responses is often referred to as a response pattern or a response type. Table

5.1 display the four possible response types.

When considering two dichotomous treatments  and , there are 16 pos-

sible response types because each individual has four counterfactual outcomes,
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one under each of the four possible joint interventions on treatments  and

: (1 1), (0 1), (1 0), and (0 0). Table 5.2 shows the 16 response types for

two treatments. This section explores the relation between response types and

the presence of interaction in the case of two dichotomous treatments  and

 and a dichotomous outcome  .

The first type in Table 5.2 has the counterfactual outcome  =1=1 equal

to 1, which means that an individual of this type would die if treated with

both transplant and vitamins. The other three counterfactual outcomes are

also equal to 1, i.e.,  =1=1 =  =0=1 =  =1=0 =  =0=0 = 1, which

means that an individual of this type would also die if treated with (no trans-Table 5.2
  for each   value

Type 1 1 0 1 1 0 0 0

1 1 1 1 1

2 1 1 1 0

3 1 1 0 1

4 1 1 0 0

5 1 0 1 1

6 1 0 1 0

7 1 0 0 1

8 1 0 0 0

9 0 1 1 1

10 0 1 1 0

11 0 1 0 1

12 0 1 0 0

13 0 0 1 1

14 0 0 1 0

15 0 0 0 1

16 0 0 0 0

plant, vitamins), (transplant, no vitamins), or (no transplant, no vitamins).

In other words, neither treatment  nor treatment  has any effect on the

outcome of such individual. He would die no matter what joint treatment he is

assigned to. Now consider type 16. All the counterfactual outcomes are 0, i.e.,

 =1=1 =  =0=1 =  =1=0 =  =0=0 = 0. Again, neither treatment

 nor treatment  has any effect on the outcome of an individual of this type.

She would survive no matter what joint treatment she is assigned to. If all in-

dividuals in the population were of types 1 and 16, we would say that neither

 nor  has any causal effect on  ; the sharp causal null hypothesis would be

true for the joint treatment (). As a consequence, the causal effect of  is

independent of , and vice versa.

Let us now focus our attention on types 4, 6, 11, and 13. Individuals of type

4 would only die if treated with vitamins, whether they do or do not receive

a transplant, i.e.,  =1=1 =  =0=1 = 1 and  =1=0 =  =0=0 = 0.

Individuals of type 13 would only die if not treated with vitamins, whether

they do or do not receive a transplant, i.e.,  =1=1 =  =0=1 = 0 and

 =1=0 =  =0=0 = 1. Individuals of type 6 would only die if treated

with transplant, whether they do or do not receive vitamins, i.e.,  =1=1 =

 =1=0 = 1 and  =0=1 =  =0=0 = 0. Individuals of type 11 would only

die if not treated with transplant, whether they do or do not receive vitamins,

i.e.,  =1=1 =  =1=0 = 0 and  =0=1 =  =0=0 = 1. If all individuals

in the population were of types 4, 6, 11, and 13, we would again say that the

causal effect of  is independent of , and vice versa.Miettinen (1982) described the 16

possible response types under two

binary treatments and outcome.
Of the 16 possible response types in Table 5.2, we have identified 6 types

(numbers 1 4, 6, 11,13, 16) with a common characteristic: for a subject with

one of those response types, the causal effect of treatment  on the outcome

 is the same regardless of the value of treatment , and the causal effect of

treatment  on the outcome  is the same regardless of the value of treatment

. In a population in which every subject has one of these 6 response types,

the causal effect of treatment  in the presence of treatment , as measured by

the causal risk difference Pr
£
 =1=1 = 1

¤− Pr £ =0=1 = 1
¤
, would equal

the causal effect of treatment  in the absence of treatment , as measured

by the causal risk difference Pr
£
 =1=0 = 1

¤ − Pr £ =0=0 = 1
¤
. That is,

if all individuals in the population have response types 1, 4, 6, 11, 13 and 16

then there will be no interaction between  and  on the additive scale.

The presence of additive interaction between  and  implies that, for someGreenland and Poole (1988) noted

that Miettinen’s response types

were not invariant to recoding of

 and  (i.e., switching the labels

“0” and “1”). They partitioned the

16 response types of Table 5.2 into

these three equivalence classes that

are invariant to recoding.

individuals in the population, the value of their two counterfactual outcomes

under  =  cannot be determined without knowledge of the value of , and

vice versa. That is, there must be individuals in at least one of the following

three classes:

1. those who would develop the outcome under only one of the four treat-

ment combinations (types 8, 12, 14, and 15 in Table 5.2)
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Technical Point 5.2

Monotonicity of causal effects. Consider a setting with a dichotomous treatment  and outcome  . The value of

the counterfactual outcome  =0 is greater than that of  =1 only among subjects of the “preventative” type. For

the other 3 types,  =1 ≥  =0 or, equivalently, an individual’s counterfactual outcomes are monotonically increasing

(i.e., nondecreasing) in . Thus, when the treatment cannot prevent any subject’s outcome (i.e., in the absence of

“preventative” subjects), all individuals’ counterfactual response types are monotonically increasing in . We then

simply say that the causal effect of  on  is monotonic.

The concept of monotonicity can be generalized to two treatments  and . The causal effects of  and 

on  are monotonic if every individual’s counterfactual outcomes   are monotonically increasing in both  and .

That is, if there are no subjects with response types
¡
 =1=1 = 0  =0=1 = 1

¢
,
¡
 =1=1 = 0  =1=0 = 1

¢
,¡

 =1=0 = 0  =0=0 = 1
¢
, and

¡
 =0=1 = 0  =0=0 = 1

¢
.

2. those who would develop the outcome under two treatment combinations,

with the particularity that the effect of each treatment is exactly the

opposite under each level of the other treatment (types 7 and 10)

3. those who would develop the outcome under three of the four treatment

combinations (types 2, 3, 5, and 9)

On the other hand, the absence of additive interaction between  and

 implies that either no individual in the population belongs to one of the

three classes described above, or that there is a perfect cancellation of equalFor more on cancellations that re-

sult in additivity even when inter-

action types are present, see Green-

land, Lash, and Rothman (2008).

deviations from additivity of opposite sign. Such cancellation would occur, for

example, if there were an equal proportion of individuals of types 7 and 10, or

of types 8 and 12.

The meaning of the term “interaction” is clarified by the classification of

individuals according to their counterfactual response types (see also Fine Point

5.1). We now introduce a tool to conceptualize the causal mechanisms involved

in the interaction between two treatments.

5.4 Sufficient causes

The meaning of interaction is clarified by the classification of individuals ac-

cording to their counterfactual response types. We now introduce a tool to

represent the causal mechanisms involved in the interaction between two treat-

ments. Consider again our heart transplant example with a single treatment

. As reviewed in the previous section, some individuals die when they are

treated, others when they are not treated, others die no matter what, and

others do not die no matter what. This variety of response types indicates

that treatment  is not the only variable that determines whether or not the

outcome  occurs.

Take those individuals who were actually treated. Only some of them died,

which implies that treatment alone is insufficient to always bring about the

outcome. As an oversimplified example, suppose that heart transplant  = 1

only results in death in subjects allergic to anesthesia. We refer to the smallest

set of background factors that, together with  = 1 are sufficient to inevitably

produce the outcome as 1. The simultaneous presence of treatment ( = 1)
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Fine Point 5.1

More on counterfactual types and interaction. The classification of subjects by counterfactual response types makes

it easier to consider specific forms of interaction. For example, we may be interested in learning whether some individuals

will develop the outcome when receiving both treatments  = 1 and  = 1, but not when receiving only one of the two.

That is, whether individuals with counterfactual responses  =1=1 = 1 and  =0=1 =  =1=0 = 0 (types 7 and

8) exist in the population. VanderWeele and Robins (2007a, 2008) developed a theory of sufficient cause interaction

for 2 and 3 treatments, and derived the identifying conditions for synergism that are described here. The following

inequality is a sufficient condition for these individuals to exist:

Pr
£
 =1=1 = 1

¤− ¡Pr £ =0=1 = 1
¤
+Pr

£
 =1=0 = 1

¤¢
 0

or, equivalently, Pr
£
 =1=1 = 1

¤− Pr £ =0=1 = 1
¤
 Pr

£
 =1=0 = 1

¤
That is, in an experiment in which treatments  and  are randomly assigned, one can compute the three counterfactual

risks in the above inequality, and empirically check that individuals of types 7 and 8 exist.

Because the above inequality is a sufficient but not a necessary condition, it may not hold even if types 7 and 8

exist. In fact this sufficient condition is so strong that it may miss most cases in which these types exist. A weaker

sufficient condition for synergism can be used if one knows, or is willing to assume, that receiving treatments  and 

cannot prevent any individual from developing the outcome, i.e., if the effects are monotonic (see Technical Point 5.2).

In this case, the inequality

Pr
£
 =1=1 = 1

¤− Pr £ =0=1 = 1
¤
 Pr

£
 =1=0 = 1

¤− Pr £ =0=0 = 1
¤

is a sufficient condition for the existence of types 7 and 8. In other words, when the effects of  and  are monotonic,

the presence of superadditive interaction implies the presence of type 8 (monotonicity rules out type 7). This sufficient

condition for synergism under monotonic effects was originally reported by Greenland and Rothman in a previous edition

of their book. It is now reported in Greenland, Lash, and Rothman (2008).

In genetic research it is sometimes interesting to determine whether there are individuals of type 8, a form of

interaction referred to as compositional epistasis. VanderWeele (2010) reviews empirical tests for compositional epistasis.

and allergy to anesthesia (1 = 1) is a minimal sufficient cause of the outcome

 .

Now take those individuals who were not treated. Again only some of them

died, which implies that lack of treatment alone is insufficient to bring about

the outcome. As an oversimplified example, suppose that no heart transplant

 = 0 only results in death if subjects have an ejection fraction less than

20%. We refer to the smallest set of background factors that, together with

 = 0 are sufficient to produce the outcome as 2. The simultaneous absence

of treatment ( = 0) and presence of low ejection fraction (2 = 1) is another

sufficient cause of the outcome  .

Finally, suppose there are some individuals who do not have neither 1
nor 2 and that would have developed the outcome whether they had been

treated or untreated. The existence of these “doomed” individuals implies

that there are some other background factors that are themselves sufficient

to bring about the outcome. As an oversimplified example, suppose that all

subjects with pancreatic cancer at the start of the study will die. We referBy definition of background factors,

the dichotomous variables  can-

not be intervened on, and cannot

be affected by treatment .

to the smallest set of background factors that are sufficient to produce the

outcome regardless of treatment status as 0. The presence of pancreatic

cancer (0 = 1) is another sufficient cause of the outcome  .

We described 3 sufficient causes for the outcome: treatment  = 1 in

the presence of 1, no treatment  = 0 in the presence of 2, and presence
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of 0 regardless of treatment status. Each sufficient cause has one or more

components, e.g.,  = 1 and 1 = 1 in the first sufficient cause. Figure 5.1

represents each sufficient cause by a circle and its components as sections of

the circle. The term sufficient-component causes is often used to refer to the

sufficient causes and their components.

Figure 5.1

The graphical representation of sufficient-component causes helps visualize

a key consequence of effect modification: as discussed in Chapter 4, the mag-

nitude of the causal effect of treatment  depends on the distribution of effect

modifiers. Imagine two hypothetical scenarios. In the first one, the population

includes only 1% of individuals with 1 = 1 (i.e., allergy to anesthesia). In

the second one, the population includes 10% of individuals with 1 = 1. The

distribution of 2 and 0 is identical between these two populations. Now,

separately in each population, we conduct a randomized experiment of heart

transplant  in which half of the population is assigned to treatment  = 1.

The average causal effect of heart transplant  on death will be greater in the

second population because there are more subjects susceptible to develop the

outcome if treated. One of the 3 sufficient causes,  = 1 plus 1 = 1, is 10

times more common in the second population than in the first one, whereas

the other two sufficient causes are equally frequent in both populations.

The graphical representation of sufficient-component causes also helps vi-

sualize an alternative concept of interaction, which is described in the next

section. First we need to describe the sufficient causes for two treatments 

and . Consider our vitamins and heart transplant example. We have al-

ready described 3 sufficient causes of death: presence/absence of  (or ) is

irrelevant, presence of transplant  regardless of vitamins , and absence of

transplant  regardless of vitamins . In the case of two treatments we need

to add 2 more ways to die: presence of vitamins  regardless of transplant ,

and absence of vitamins regardless of transplant . We also need to add four

more sufficient causes to accommodate those who would die only under certain

combination of values of the treatments  and . Thus, depending on which

background factors are present, there are 9 possible ways to die:
Greenland and Poole (1988) first

enumerated these 9 sufficient

causes.
1. by treatment  (treatment  is irrelevant)

2. by the absence of treatment  (treatment  is irrelevant)

3. by treatment  (treatment  is irrelevant)

4. by the absence of treatment  (treatment  is irrelevant)

5. by both treatments  and 

6. by treatment  and the absence of 

7. by treatment  and the absence of 

8. by the absence of both  and 

9. by other mechanisms (both treatments  and  are irrelevant)
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In other words, there are 9 possible sufficient causes with treatment com-

ponents  = 1 only,  = 0 only,  = 1 only,  = 0 only,  = 1 and  = 1,

 = 1 and  = 0,  = 0 and  = 1,  = 0 and  = 0, and neither  or

 matter. Each of these sufficient causes includes a set of background factors

from 1,..., 8 and 0. Figure 5.2 represents the 9 sufficient-component causes

for two treatments  and .

Figure 5.2

Not all 9 sufficient-component causes for a dichotomous outcome and two

treatments exist in all settings. For example, if receiving vitamins  = 1 doesThis graphical representation of

sufficient-component causes is of-

ten referred to as “the causal pies.”

not kill any individual, regardless of her treatment , then the 3 sufficient

causes with the component  = 1 will not be present. The existence of those

3 sufficient causes would mean that some individuals (e.g., those with 3 = 1)

would be killed by receiving vitamins ( = 1), that is, their death would be

prevented by not giving vitamins ( = 0) to them. Also note that some of the

background factors  may be unnecessary. For example, if lack of vitamins

and transplant were sufficient to bring about the outcome by themselves in

some people, then the background factor 8 in the last sufficient-component

cause could be omitted.

5.5 Sufficient cause interaction

The colloquial use of the term “interaction between treatments  and ”

evokes the existence of some causal mechanism by which the two treatments

work together (i.e., “interact”) to produce certain outcome. Interestingly, the

definition of interaction within the counterfactual framework does not require

any knowledge about those mechanisms nor even that the treatments work

together (see Fine Point 5.3). In our example of vitamins  and heart trans-

plant , we said that there is an interaction between the treatments  and

 if the causal effect of  when everybody receives  is different from the

causal effect of  when nobody receives . That is, interaction is defined

by the contrast of counterfactual quantities, and can therefore be identified

by conducting an ideal randomized experiment in which the conditions of ex-

changeability, positivity, and consistency hold for both treatments  and .
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Fine Point 5.2

From counterfactuals to sufficient-component causes, and vice versa. There is a correspondence between the

counterfactual response types and the sufficient component causes. In the case of a dichotomous treatment and outcome,

suppose an individual has none of the background factors 0, 1, 2. She will have an “immune” response type because

she lacks the components necessary to complete all of the sufficient causes, whether she is treated or not. The table

below displays the mapping between response types and sufficient-component causes in the case of one treatment .

Type  =0  =1 Component causes

Doomed 1 1 0 = 1 or {1 = 1 and 2 = 1}
Preventative 1 0 0 = 0 and 1 = 0 and 2 = 1

Causative 0 1 0 = 0 and 1 = 1 and 2 = 0

Immune 0 0 0 = 0 and 1 = 0 and 2 = 0

A particular combination of component causes corresponds to one and only one counterfactual type. However, a

particular response type may correspond to several combinations of component causes. For the example, individuals of

the “doomed” type may have any combination of component causes including 0 = 1, no matter what the values of

1 and 2 are, or any combination including {1 = 1 and 2 = 1}.
Sufficient-component causes can also be used to provide a mechanistic description of exchangeability  

`
. For

a dichotomous treatment and outcome, exchangeability means that the proportion of subjects who would have the

outcome under treatment, and under no treatment, is the same in the treated  = 1 and the untreated  = 0. That

is, Pr[ =1 = 1| = 1] = Pr[ =1 = 1| = 0] and Pr[ =0 = 1| = 1] = Pr[ =0 = 1| = 0].
Now the individuals who would develop the outcome if treated are the “doomed” and the “causative”, that is,

those with 0 = 1 or 1 = 1. The individuals who would get the outcome if untreated are the “doomed” and the

“preventative”, that is, those with 0 = 1 or 2 = 1. Therefore there will be exchangeability if the proportions of

“doomed” + “causative” and of “doomed” + “preventative” are equal in the treated and the untreated. That is,

exchangeability for a dichotomous treatment and outcome can be expressed in terms of sufficient-component causes as

Pr[0 = 1 or 1 = 1| = 1] = Pr[0 = 1 or 1 = 1| = 0] and Pr[0 = 1 or 2 = 1| = 1] = Pr[0 = 1 or

2 = 1| = 0].
For additional details see Greenland and Brumback (2002), Flanders (2006), and VanderWeele and Hernán (2006).

Some of the above results were generalized to the case of two or more dichotomous treatments by VanderWeele and

Robins (2008).

There is no need to contemplate the causal mechanisms (physical, chemical,

biologic, sociological...) that underlie the presence of interaction.

This section describes a second concept of interaction that perhaps brings

us one step closer to the causal mechanisms by which treatments  and 

bring about the outcome. This second concept of interaction is not based on

counterfactual contrasts but rather on sufficient-component causes, and thus

we refer to it as interaction within the sufficient-component-cause framework

or, for brevity, sufficient cause interaction.

A sufficient cause interaction between  and  exists in the population if

 and  occur together in a sufficient cause. For example, suppose individuals

with background factors 5 = 1 will develop the outcome when jointly receiving

vitamins ( = 1) and heart transplant ( = 1), but not when receiving only

one of the two treatments. Then a sufficient cause interaction between  and

 exists if there exists a subject with 5 = 1. It then follows that if there

exists a subject with counterfactual responses  =1=1 = 1 and  =0=1 =

 =1=0 = 0, a sufficient cause interaction between  and  is present.

Sufficient cause interactions can be synergistic or antagonistic. There is

synergism between treatment  and treatment  when  = 1 and  = 1
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Fine Point 5.3

Biologic interaction. In epidemiologic discussions, sufficient cause interaction is commonly referred to as biologic

interaction (Rothman et al, 1980). This choice of terminology might seem to imply that, in biomedical applications,

there exist biological mechanisms through which two treatments  and  act on each other in bringing about the

outcome. However, this may not be necessarily the case as illustrated by the following example proposed by VanderWeele

and Robins (2007a).

Suppose  and  are the two alleles of a gene that produces an essential protein. Individuals with a deleterious

mutation in both alleles ( = 1 and  = 1) will lack the essential protein and die within a week after birth, whereas

those with a mutation in none of the alleles (i.e.,  = 0 and  = 0) or in only one of the alleles (i.e.,  = 0 and  = 1,

 = 1 and  = 0 ) will have normal levels of the protein and will survive. We would say that there is synergism between

the alleles  and  because there exists a sufficient component cause of death that includes  = 1 and  = 1. That

is, both alleles work together to produce the outcome. However, it might be argued that they do not physically act on

each other and thus that they do not interact in any biological sense.

are present in the same sufficient cause, and antagonism between treatment

 and treatment  when  = 1 and  = 0 (or  = 0 and  = 1) are

present in the same sufficient cause. Alternatively, one can think of antagonism

between treatment  and treatment  as synergism between treatment  and

no treatment  (or between no treatment  and treatment ).

Unlike the counterfactual definition of interaction, sufficient cause inter-

action makes explicit reference to the causal mechanisms involving the treat-

ments  and . One could then think that identifying the presence of sufficient

cause interaction requires detailed knowledge about these causal mechanisms.

It turns out that this not always the case: sometimes we can conclude that suf-

ficient cause interaction exists even if we lack any knowledge whatsoever about

the sufficient causes and their components. Specifically, if the inequalities inRothman (1976) described the con-

cepts of synergism and antagonism

within the sufficient-component-

cause framework.

Fine Point 5.1 hold, then there exists synergism between  and . That is, one

can empirically check that synergism is present without ever giving any thought

to the causal mechanisms by which  and  work together to bring about the

outcome. This result is not that surprising because of the correspondence be-

tween counterfactual response types and sufficient causes (see Fine Point 5.2),

and because the above inequality is a sufficient but not a necessary condition,

i.e., the inequality may not hold even if synergism exists.

5.6 Counterfactuals or sufficient-component causes?

The sufficient-component-cause framework and the counterfactual (potential

outcomes) framework address different questions. The sufficient component

cause model considers sets of actions, events, or states of nature which together

inevitably bring about the outcome under consideration. The model gives an

account of the causes of a particular effect. It addresses the question, “Given a

particular effect, what are the various events which might have been its cause?”

The potential outcomes or counterfactual model focuses on one particular causeA counterfactual framework of cau-

sation was already hinted by Hume

(1748).

or intervention and gives an account of the various effects of that cause. In

contrast to the sufficient component cause framework, the potential outcomes

framework addresses the question, “What would have occurred if a particular

factor were intervened upon and thus set to a different level than it in fact
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Monotonicity of causal effects and sufficient causes. When treatment  and  have monotonic effects, then some

sufficient causes are guaranteed not to exist. For example, suppose that cigarette smoking ( = 1) never prevents heart

disease, and that physical inactivity ( = 1) never prevents heart disease. Then no sufficient causes including either

 = 0 or  = 0 can be present. This is so because, if a sufficient cause including the component  = 0 existed, then

some individuals (e.g., those with 2 = 1) would develop the outcome if they were unexposed ( = 0) or, equivalently,

the outcome could be prevented in those individuals by treating them ( = 1). The same rationale applies to  = 0.

The sufficient component causes that cannot exist when the effects of  and  are monotonic are crossed out in Figure

5.3.

was?” Unlike the sufficient component cause framework, the counterfactual

framework does not require a detailed knowledge of the mechanisms by which

the factor affects the outcome.

The counterfactual approach addresses the question “what happens?” The

sufficient-component-cause approach addresses the question “how does it hap-

pen?” For the contents of this book–conditions and methods to estimate the

average causal effects of hypothetical interventions–the counterfactual frame-

work is the natural one. The sufficient-component-cause framework is helpfulThe sufficient-component-cause

framework was developed in phi-

losophy by Mackie (1965). He

introduced the concept of INUS

condition for  : an Insufficient

but Necessary part of a condition

which is itself Unnecessary but

exclusively Sufficient for  .

to think about the causal mechanisms at work in bringing about a particular

outcome. Sufficient-component causes have a rightful place in the teaching of

causal inference because they help understand key concepts like the dependence

of the magnitude of causal effects on the distribution of background factors (ef-

fect modifiers), and the relationship between effect modification, interaction,

and synergism.

Though the sufficient-component-cause framework is useful from a peda-

gogic standpoint, its relevance to actual data analysis is yet to be determined.

In its classical form, the sufficient-component-cause framework is determinis-

tic, its conclusions depend on the coding on the outcome, and is by definition

limited to dichotomous treatments and outcomes (or to variables that can be

recoded as dichotomous variables). This limitation practically rules out the

consideration of any continuous factors, and restricts the applicability of the

framework to contexts with a small number of dichotomous factors. However,

recent extensions of the sufficient-component-cause framework to stochastic

settings and to categorical and ordinal treatments may lead to an increased

application of this approach to realistic data analysis. Finally, even allowing for

recent extensions of the sufficient-component-cause framework, we may rarely

have the large amount of data needed to study the fine distinctions it makes.

To estimate causal effects more generally, the counterfactual framework will

likely continue to be the one most often employed. Some apparently alternative

frameworks–causal diagrams, decision theory–are essentially equivalent to

the counterfactual framework, as described in the next chapter.
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More on the attributable fraction. Fine Point 3.1 defined the excess fraction for treatment  as the proportion of

cases attributable to treatment  in a particular population, and described an example in which the excess fraction for

 was 75%. That is, 75% of the cases would not have occurred if everybody had received treatment  = 0 rather than

their observed treatment . Now consider a second treatment . Suppose that the excess fraction for  is 50%. Does

this mean that a joint intervention on  and  could prevent 125% (75% + 50%) of the cases? Of course not.

Clearly the excess fraction cannot exceed 100% for a single treatment (either  or ). Similarly, it should be

clear that the excess fraction for any joint intervention on  and  cannot exceed 100%. That is, if we were allowed

to intervene in any way we wish (by modifying , , or both) in a population, we could never prevent a fraction of

disease greater than 100%. In other words, no more than 100% of the cases can be attributed to the lack of certain

intervention, whether single or joint. But then why is the sum of excess fractions for two single treatments greater than

100%? The sufficient-component-cause framework helps answer this question.

As an example, suppose that Zeus had background factors 5 = 1 (and none of the other background factors) and

was treated with both  = 1 and  = 1. Zeus would not have been a case if either treatment  or treatment  had

been withheld. Thus Zeus is counted as a case prevented by an intervention that sets  = 0, i.e., Zeus is part of the

75% of cases attributable to . But Zeus is also counted as a case prevented by an intervention that sets  = 0, i.e.,

Zeus is part of the 50% of cases attributable to . No wonder the sum of the excess fractions for  and  exceeds

100%: some individuals like Zeus are counted twice!

The sufficient-component-cause framework shows that it makes little sense to talk about the fraction of disease

attributable to  and  separately when both may be components of the same sufficient cause. For example, the

discussion about the fraction of disease attributable to either genes or environment is misleading. Consider the mental

retardation caused by phenylketonuria, a condition that appears in genetically susceptible individuals who eat certain

foods. The excess fraction for those foods is 100% because all cases can be prevented by removing the foods from

the diet. The excess fraction for the genes is also 100% because all cases would be prevented if we could replace the

susceptibility genes. Thus the causes of mental retardation can be seen as either 100% genetic or 100% environmental.

See Rothman, Greenland, and Lash (2008) for further discussion.

Figure 5.3
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Chapter 6
GRAPHICAL REPRESENTATION OF CAUSAL EFFECTS

Causal inference generally requires expert knowledge and untestable assumptions about the causal network linking

treatment, outcome, and other variables. Earlier chapters focused on the conditions and methods to compute

causal effects in oversimplified scenarios (e.g., the causal effect of your looking up on other pedestrians’ behavior,

an idealized heart transplant study). The goal was to provide a gentle introduction to the ideas underlying the

more sophisticated approaches that are required in realistic settings. Because the scenarios we considered were so

simple, there was really no need to make the causal network explicit. As we start to turn our attention towards

more complex situations, however, it will become crucial to be explicit about what we know and what we assume

about the variables relevant to our particular causal inference problem.

This chapter introduces a graphical tool to represent our qualitative expert knowledge and a priori assumptions

about the causal structure of interest. By summarizing knowledge and assumptions in an intuitive way, graphs

help clarify conceptual problems and enhance communication among investigators. The use of graphs in causal

inference problems makes it easier to follow a sensible advice: draw your assumptions before your conclusions.

6.1 Causal diagrams

This chapter describes graphs, which we will refer to as causal diagrams, to

represent key causal concepts. This and the next three chapters are focused onThe modern theory of diagrams

for causal inference arose within

the disciplines of computer science

and artificial intelligence. Com-

prehensive books on this subject

have been written by Pearl (2009)

and Spirtes, Glymour and Scheines

(2000).

problem conceptualization via causal diagrams. We will use causal diagrams to

classify sources of systematic bias and to identify potential problems in study

design and analysis. The word “bias” is frequently used by investigators making

causal inferences. There are several related, but technically different, uses of

the term “bias” (see Chapter 10). We say that there is systematic bias when

the data are insufficient to identify–compute–the causal effect even with an

infinite sample size. As a result, no estimator can be consistent (see Chapter

1 for a definition of consistent estimator). Chapters 7, 8, and 9 are devoted to

three types of systematic bias: confounding, selection bias, and measurement

bias, respectively.

The graphical approach to bias has generally been found to be easier to

use and more intuitive than the counterfactual approach. However, the two

approaches are intimately linked. Specifically, associated with each graph is

an underlying counterfactual model. It is this model that provides the math-Richardson and Robins (2013) have

recently developed a new causal

graph–the Single World Interven-

tion Graph (SWIG)–that seam-

lessly unifies the counterfactual and

graphical approaches to causality

by explicitly including the counter-

factual variables on the graph. We

defer the introduction of SWIGs un-

til Chapter 7 as the material cov-

ered in this chapter serves as a nec-

essary prerequisite.

ematical justification for the heuristic, intuitive graphical methods we now

describe. However, conventional causal diagrams do not include the undelying

counterfactual variables on the graph. Therefore the link between graphs and

counterfactuals has remained hidden.

Take a look at the graph in Figure 6.1. It comprises three nodes representing

random variables (, ,  ) and three edges (the arrows). We adopt the

convention that time flows from left to right, and thus  is temporally prior to

 and  , and  is temporally prior to  . As in previous chapters, , , and

 represent disease severity, heart transplant, and death, respectively.

The presence of an arrow pointing from a particular variable  to another

variable  indicates either that we know there is a direct causal effect (i.e., an
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Causal directed acyclic graphs. We define a directed acyclic graph (DAG)  to be a graph whose nodes (vertices)

are random variables  = (1      ) with directed edges (arrows) and no directed cycles. We use  to denote

the parents of , i.e., the set of nodes from which there is a direct arrow into . The variable  is a descendant

of  (and  is an ancestor of ) if there is a sequence of nodes connected by edges between  and  such that,

following the direction indicated by the arrows, one can reach  by starting at  . For example, consider the DAG in

Figure 6.1. In this DAG,  = 3 and we can choose 1 = , 2 = , and 3 =  ; the parents  of 3 =  are

(). We will adopt the notational convention that if   ,  is not an ancestor of  .

A causal DAG is a DAG in which 1) the lack of an arrow from node  to  can be interpreted as the absence

of a direct causal effect of  on  (relative to the other variables on the graph), 2) all common causes, even if

unmeasured, of any pair of variables on the graph are themselves on the graph, and 3) any variable is a cause of its

descendants.

Causal DAGs are of no practical use unless we make an assumption linking the causal structure represented by

the DAG to the data obtained in a study. This assumption, referred to as the causal Markov assumption, states that,

conditional on its direct causes, a variable  is independent of any variable for which it is not a cause. That is,

conditional on its parents,  is independent of its non-descendants. This latter statement is mathematically equivalent

to the statement that the density  ( ) of the variables  in DAG  satisfies the Markov factorization

 () =

Y
=1

 ( | ) .

effect not mediated through any other variables on the graph) for at least one

individual, or that we are unwilling to assume such individual causal effects

do not exist. Alternatively, the lack of an arrow means that we know, or are

L YA
Figure 6.1

willing to assume, that  has no direct causal effect on for any individual in

the population. For example, in Figure 6.1, the arrow from  to  means that

either we know that disease severity affects the probability of receiving a heart

transplant or that we are not willing to assume otherwise. A standard causal

diagram does not distinguish whether an arrow represents a harmful effect or

a protective effect. Furthermore, if, as in figure 6.1, a variable (here,  ) has

two causes, the diagram does not encode how the two causes interact.

Causal diagrams like the one in Figure 6.1 are known as directed acyclic

graphs, which is commonly abbreviated as DAGs. “Directed” because the

edges imply a direction: because the arrow from  to  is into ,  may cause

, but not the other way around. “Acyclic” because there are no cycles: a

variable cannot cause itself, either directly or through another variable.

Directed acyclic graphs have applications other than causal inference. Here

we focus on causal directed acyclic graphs. Informally, a directed acyclic graph

is causal if the common causes of any pair of variables in the graph are also

in the graph. For example, suppose in our study individuals are randomly

assigned to heart transplant  with a probability that depends on the severity

of their disease . Then  is a common cause of  and  , and needs to be

included in the graph, as shown in the causal diagram in Figure 6.1. Now

YA
Figure 6.2

suppose in our study individuals are randomly assigned to heart transplant

with the same probability regardless of their disease severity. Then  is not

a common cause of  and  and need not be included in the causal diagram.

Figure 6.1 represents a conditionally randomized experiment, whereas Figure

6.2 represents a marginally randomized experiment.

Figure 6.1 may also represent an observational study. Specifically, Figure
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Counterfactual models associated with a causal DAG. A causal DAG G represents an underlying counterfactual

model. To provide a formal definition of the counterfactual model represented by a DAG , we use the following

notation. For any random variable  , let W denote the support (i.e., the set of possible values ) of  . For any set

of ordered variables 1     , define  = (1     ). Let  denote any subset of variables in  and let  be a

value of . Then  
 denotes the counterfactual value of  when  is set to .

A nonparametric structural equation model (NPSEM) represented by a DAG  with vertex set  assumes the

existence of unobserved random variables (errors)  and deterministic unknown functions  ( ) such that

1 = 1 (1) and the one-step ahead counterfactual 
−1
 ≡  

 is given by  ( ). That is, only the parents

of  have a direct effect on  relative to the other variables on. Both the factual variable  and the counterfactuals

 
 for any  ⊂  are obtained recursively from 1 and 

−1
   ≥   1. For example,  1

3 = 
1

1
2

3 , i.e., the

counterfactual value  1
3 of 3 when 1 is set to 1 is the one-step ahead counterfactual 

12
3 with 2 equal to the

counterfactual value  1
2 of 2. Similarly, 3 = 

1
1
2

3 and 
14
3 =  1

3 because 4 is not a cause of 3.

Robins (1986) called this NPSEM a finest causally interpreted structural tree graph (FCISTGs). Pearl (2000)

showed how to represent this model with a DAG under the assumption that every variable on the graph is subject

to intervention with well-defined causal effects. Robins (1986) also proposed more realistic CISTGs in which only a

subset of the variables are subject to intervention. For expositional purposes, we will assume that every variable can be

intervened on, even though the statistical methods considered here do not actually require this assumption.

A FCISTG model does not imply that the causal Markov assumption holds; additional statistical independence

assumptions are needed. For example, Pearl (2000) assumed an NPSEM in which all error terms  are mutually

independent. We refer to Pearl’s model with independent errors as an NPSEM-IE. In contrast, Robins (1986) only

assumed that the one-step ahead counterfactuals 
−1
 =  ( ) and 

−1
 =  (  )     are jointly

independent when −1 is a subvector of the −1, and referred to this as the finest fully randomized causally interpreted
structured tree graph (FFRCISTG) model, which was introduced in Chapter 2. Robins (1986) showed this assumption

implies that the causal Markov assumption holds. An NPSEM-IE is an FFRCISTGs but not vice-versa because an

NPSEM-IE makes stronger assumptions than an FFRCISTG (Robins and Richardson 2010).

A DAG represents an NPSEM but we need to specify which type. For example, the DAG in Figure 6.2 may

correspond to either an NPSEM-IE that implies full exchangeability
¡
 =0  =1

¢ q , or to an FFRCISTG that only

implies marginal exchangeability   q  for both  = 0 and  = 1. In this book we assume that DAGs represent

FFRCISTGs.

6.1 represents an observational study in which we are willing to assume that

the assignment of heart transplant  depends on disease severity  and on no

other causes of  . Otherwise, those causes of  , even if unmeasured, would

need to be included in the diagram, as they would be common causes of  and

 . In the next chapter we will describe how the willingness to consider Figure

6.1 as the causal diagram for an observational study is the graphic translation

of the assumption of conditional exchangeability given ,   q| for all .

Causal diagrams are a simple way to encode our subject-matter knowledge,

and our assumptions, about the qualitative causal structure of a problem. But,

as described in the next sections, causal diagrams also encode information

about potential associations between the variables in the causal network. It

is precisely this simultaneous representation of association and causation that

makes causal diagrams such an attractive tool. What follows is an informal

introduction to graphic rules to infer associations from causal diagrams. Our

emphasis is on conceptual insight rather than on formal rigor.
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6.2 Causal diagrams and marginal independence

Consider the following two examples. First, suppose you know that aspirin use

 has a preventive causal effect on the risk of heart disease  , i.e., Pr[ =1 =

1] 6= Pr[ =0 = 1]. The causal diagram in Figure 6.2 is the graphical transla-

tion of this knowledge for an experiment in which aspirin  is randomly, and

unconditionally, assigned. Second, suppose you know that carrying a lighter 

has no causal effect (causative or preventive) on anyone’s risk of lung cancer  ,

i.e., Pr[ =1 = 1] = Pr[ =0 = 1], and that cigarette smoking  has a causal

effect on both carrying a lighter  and lung cancer  . The causal diagram in

Figure 6.3 is the graphical translation of this knowledge. The lack of an arrow

L YA
Figure 6.3

between  and  indicates that carrying a lighter does not have a causal effect

on lung cancer;  is depicted as a common cause of  and  .

To draw Figures 6.2 and 6.3 we only used your knowledge about the causal

relations among the variables in the diagram but, interestingly, these causal

diagrams also encode information about the expected associations (or, more

exactly, the lack of them) among the variables in the diagram. We now argue

heuristically that, in general, the variables  and  will be associated in both

Figure 6.2 and 6.3, and describe key related results from graph theory.

Take first the randomized experiment represented in Figure 6.2. Intuitively

one would expect that two variables  and  linked only by a causal arrow

would be associated. And that is exactly what graph theory shows: when

one knows that  has a causal effect on  , as in Figure 6.2, then one should

also generally expect  and  to be associated. This is of course consistent

with the fact that, in an ideal randomized experiment with unconditional ex-

changeability, causation Pr[ =1 = 1] 6= Pr[ =0 = 1] implies association

Pr[ = 1| = 1] 6= Pr[ = 1| = 0], and vice versa. A heuristic that cap-

tures the causation-association correspondence in causal diagrams is the visu-

alization of the paths between two variables as pipes or wires through whichA path between two variables and

 in a DAG is a route that connects

 and  by following a sequence

of (nonintersecting) edges. A path

is causal if it consists entirely of

edges with their arrows pointing in

the same direction. Otherwise it is

noncausal.

association flows. Association, unlike causation, is a symmetric relationship

between two variables; thus, when present, association flows between two vari-

ables regardless of the direction of the causal arrows. In Figure 6.2 one could

equivalently say that the association flows from  to  or from  to .

Now let us consider the observational study represented in Figure 6.3. We

know that carrying a lighter  has no causal effect on lung cancer  . The

question now is whether carrying a lighter  is associated with lung cancer  .

That is, we know that Pr[ =1 = 1] = Pr[ =0 = 1] but is it also true that

Pr[ = 1| = 1] = Pr[ = 1| = 0]? To answer this question, imagine that a
naive investigator decides to study the effect of carrying a lighter  on the risk

of lung cancer  (we do know that there is no effect but this is unknown to

the investigator). He asks a large number of people whether they are carrying

lighters and then records whether they are diagnosed with lung cancer during

the next 5 years. Hera is one of the study participants. We learn that Hera

is carrying a lighter. But if Hera is carrying a lighter ( = 1), then it is

more likely that she is a smoker ( = 1), and therefore she has a greater than

average risk of developing lung cancer ( = 1). We then intuitively conclude

that  and  are expected to be associated because the cancer risk in those

carrying a lighter ( = 1) is different from the cancer risk in those not carrying

a lighter ( = 0), or Pr[ = 1| = 1] 6= Pr[ = 1| = 0]. In other words,

having information about the treatment  improves our ability to predict the

outcome  , even though  does not have a causal effect on  . The investigator

will make a mistake if he concludes that  has a causal effect on  just because

 and  are associated. Graph theory again confirms our intuition. In graphic
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Influence diagrams. An alternative approach to causal inference is based on decision theory (Dawid 2000, 2002). This

decision-theoretic approach employs a notation that makes no reference to counterfactuals and uses causal diagrams

augmented with decision nodes to represent the interventions of interest. Though the decision-theoretic approach largely

leads to the same methods described here, we do not include decision nodes in the causal diagrams presented in this

chapter. Because we were always explicit about the potential interventions on the variable , the additional nodes (to

represent the potential interventions) would be somewhat redundant.

terms,  and  are associated because there is a flow of association from  to

 (or, equivalently, from  to ) through the common cause .

Let us now consider a third example. Suppose you know that certain genetic

haplotype  has no causal effect on anyone’s risk of becoming a cigarette

smoker  , i.e., Pr[ =1 = 1] = Pr[ =0 = 1], and that both the haplotype 

and cigarette smoking  have a causal effect on the risk of heart disease .

A LY
Figure 6.4

The causal diagram in Figure 6.4 is the graphical translation of this knowledge.

The lack of an arrow between  and  indicates that the haplotype does not

have a causal effect on cigarette smoking, and  is depicted as a common effect

of  and  . In graph theory the common effect  is referred to as a collider

on the path − −  because two arrowheads collide on this node.

Again the question is whether  and  are associated. To answer this

question, imagine that another investigator decides to study the effect of hap-

lotype  on the risk of becoming a cigarette smoker  (we do know that there

is no effect but this is unknown to the investigator). He makes genetic deter-

minations on a large number of children, and then records whether they end

up becoming smokers. Apollo is one of the study participants. We learn that

Apollo does not have the haplotype ( = 0). Is he more or less likely to be-

come a cigarette smoker ( = 1) than the average person? Learning about the

haplotype  does not improve our ability to predict the outcome  because

the risk in those with ( = 1) and without ( = 0) the haplotype is the same,

or Pr[ = 1| = 1] = Pr[ = 1| = 0]. In other words, we would intuitively
conclude that  and  are not associated, i.e.,  and  are independent or

 q  . The knowledge that both  and  cause heart disease  is irrelevant

when considering the association between  and  . Graph theory again con-

firms our intuition because it says that colliders, unlike other variables, block

the flow of association along the path on which they lie. Thus  and  are

independent because the only path between them, → ←  , is blocked by

the collider .

In summary, two variables are (marginally) associated if one causes the

other, or if they share common causes. Otherwise they will be (marginally) in-

dependent. The next section explores the conditions under which two variables

 and  may be independent conditionally on a third variable .

6.3 Causal diagrams and conditional independence

We now revisit the settings depicted in Figures 6.2, 6.3, and 6.4 to discuss the

concept of conditional independence in causal diagrams.

According to Figure 6.2, we expect aspirin  and heart disease  to be
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associated because aspirin has a causal effect on heart disease. Now suppose

we obtain an additional piece of information: aspirin  affects the risk of heart

disease  because it reduces platelet aggregation . This new knowledge is

translated into the causal diagram of Figure 6.5 that shows platelet aggregation

A YB
Figure 6.5

 (1: high, 0: low) as a mediator of the effect of  on  .

Once a third variable is introduced in the causal diagram we can ask a new

question: is there an association between  and  within levels of (conditional

on) ? Or, equivalently: when we already have information on , does infor-

mation about  improve our ability to predict  ? To answer this question,

suppose data were collected on , , and  in a large number of individuals,

and that we restrict the analysis to the subset of individuals with low platelet

aggregation ( = 0). The square box placed around the node  in Figure 6.5

represents this restriction. (We would also draw a box around  if the analysis

were restricted to the subset of individuals with  = 1.)Because no conditional indepen-

dences are expected in complete

causal diagrams (those in which all

possible arrows are present), it is of-

ten said that information about as-

sociations is in the missing arrows.

Individuals with low platelet aggregation ( = 0) have a lower than average

risk of heart disease. Now take one of these individuals. Regardless of whether

the individual was treated ( = 1) or untreated ( = 0), we already knew

that he has a lower than average risk because of his low platelet aggregation.

In fact, because aspirin use affects heart disease risk only through platelet

aggregation, learning an individual’s treatment status does not contribute any

additional information to predict his risk of heart disease. Thus, in the subset of

individuals with  = 0, treatment  and outcome  are not associated. (The

same informal argument can be made for individuals in the group with  = 1.)

Even though  and  are marginally associated,  and  are conditionally

independent (unassociated) given  because the risk of heart disease is the

same in the treated and the untreated within levels of : Pr[ = 1| =

1  = ] = Pr[ = 1| = 0  = ] for all . That is,  q  |. Indeed
graph theory states that a box placed around variable  blocks the flow of

association through the path →  →  .

Let us now return to Figure 6.3. We concluded in the previous section that

carrying a lighter  was associated with the risk of lung cancer  because

the path  ←  →  was open to the flow of association from  to  . The

question we ask now is whether  is associated with  conditional on . This
L YA

Figure 6.6 new question is represented by the box around  in Figure 6.6. Suppose the

investigator restricts the study to nonsmokers ( = 1). In that case, learning

that an individual carries a lighter ( = 1) does not help predict his risk of

lung cancer ( = 1) because the entire argument for better prediction relied

on the fact that people carrying lighters are more likely to be smokers. This

argument is irrelevant when the study is restricted to nonsmokers or, more

generally, to people who smoke with a particular intensity. Even though 

and  are marginally associated,  and  are conditionally independent given

 because the risk of lung cancer is the same in the treated and the untreated

within levels of : Pr[ = 1| = 1  = ] = Pr[ = 1| = 0  = ] for all

. That is,  q  |. Graphically, we say that the flow of association betweenBlocking the flow of association

between treatment and outcome

through the common cause is

the graph-based justification to

use stratification as a method to

achieve exchangeability.

 and  is interrupted because the path  ←  →  is blocked by the box

around .

Finally, consider Figure 6.4 again. We concluded in the previous section

that having the haplotype  was independent of being a cigarette smoker

 because the path between  and  ,  →  ←  , was blocked by the

collider . We now argue heuristically that, in general,  and  will be

conditionally associated within levels of their common effect . Suppose that

the investigators, who are interested in estimating the effect of haplotype 

on smoking status  , restricted the study population to subjects with heart
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disease ( = 1). The square around  in Figure 6.7 indicates that they are

conditioning on a particular value of . Knowing that a subject with heart

disease lacks haplotype  provides some information about her smoking status
A LY

Figure 6.7 because, in the absence of , it is more likely that another cause of  such

as  is present. That is, among people with heart disease, the proportion of

smokers is increased among those without the haplotype . Therefore,  and

 are inversely associated conditionally on  = 1. The investigator will make

a mistake if he concludes that  has a causal effect on  just because  and

 are associated within levels of . In the extreme, if  and  were the onlySee Chapter 8 for more on associ-

ations due to conditioning on com-

mon effects.

causes of , then among people with heart disease the absence of one of them

would perfectly predict the presence of the other. Graph theory shows that

indeed conditioning on a collider like  opens the path  →  ←  , which

was blocked when the collider was not conditioned on. Intuitively, whether

two variables (the causes) are associated cannot be influenced by an event

in the future (their effect), but two causes of a given effect generally become

associated once we stratify on the common effect.

As another example, the causal diagram in Figure 6.8 adds to that in Figure

A LY C
Figure 6.8

6.7 a diuretic medication  whose use is a consequence of a diagnosis of heart

disease.  and  are also associated within levels of  because  is a common

effect of  and  . Graph theory shows that conditioning on a variable 

affected by a collider  also opens the path → ←  . This path is blocked

in the absence of conditioning on either the collider  or its consequence .

This and the previous section review three structural reasons why two vari-

ables may be associated: one causes the other, they share common causes, or

they share a common effect and the analysis is restricted to certain level of that

common effect. Along the way we introduced a number of graphical rules thatThe mathematical theory underly-

ing the graphical rules is known as

“d-separation” (Pearl 1995). See

Fine Point 6.3.

can be applied to any causal diagram to determine whether two variables are

(conditionally) independent. The arguments we used to support these graphi-

cal rules were heuristic and relied on our causal intuitions. These arguments,

however, have been formalized and mathematically proven. See Fine Point 6.2

for a systematic summary of the graphical rules.
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Figure 6.9

There is another possible source of association between two variables that

we have not discussed yet: chance or random variability. Unlike the structural

reasons for an association between two variables–causal effect of one on the

other, shared common causes, conditioning on common effects–random vari-

ability results in chance associations that become smaller when the size of the

study population increases.

To focus our discussion on structural associations rather than chance asso-

ciations, we continue to assume until Chapter 10 that we have recorded data on

every individual in a very large (perhaps hypothetical) population of interest.

6.4 Graphs, counterfactuals, and interventions

Causal diagrams encode qualitative expert knowledge, or assumptions, about

the causal structure of a problem and hence about the causal determinant of

biases. Though causal diagrams are a useful tool to think conceptually about

a causal inference problem, quantitative approaches are needed to computePearl (2009) reviews quantitative

methods for causal inference that

are derived from graph theory.

causal effects. The identification formulas for the effects of interventions given

in Chapter 2 can also be derived using the tools of graph theory. Therefore

our choice of counterfactual theory in Chapters 1-5 did not really privilege one

particular approach but only one particular notation. See also Fine Point 6.1.
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Fine Point 6.2

Faithfulness. In a causal DAG the absence of an arrow from  to  indicates that the sharp null hypothesis of no

causal effect of  on any individual’s  holds, and an arrow from  to  (as in Figure 6.2) indicates that  has a

causal effect on the outcome  of at least one individual in the population. We would generally expect that in a setting

represented by Figure 6.2 there is both an average causal effect of  on  , Pr[ =1 = 1] 6= Pr[ =0 = 1], and an

association between  and  , Pr[ = 1| = 1] 6= Pr[ = 1| = 0]. However, that is not necessarily true: a setting
represented by Figure 6.2 may be one in which there is neither an average causal effect nor an association.

For an example, remember the data in Table 4.1. Heart transplant  increases the risk of death  in women

(half of the population) and decreases the risk of death in men (the other half). Because the beneficial and harmful

effects of  perfectly cancel out, the average causal effect is null, Pr[ =1 = 1] = Pr[ =0 = 1]. Yet Figure 6.2 is the

correct causal diagram because treatment  affects the outcome  of some individuals–in fact, of all individuals–in

the population.

When, as in our example, the causal diagram makes us expect a non-null association that does not actually exist

in the data, we say that the joint distribution of the data is not faithful to the causal DAG. In our example the

unfaithfulness was the result of effect modification (by sex) with opposite effects of exactly equal magnitude in each

half of the population. Such perfect cancellation of effects is rare, and thus we will assume faithfulness throughout this

book. Because unfaithful distributions are rare, in practice lack of d-separation (See Fine Point 6.3) can be equated to

non-zero association.

There are, however, instances in which faithfulness is violated by design. For example, consider the prospective study

in Section 4.5. The average causal effect of  on  was computed after matching on . In the matched population 

and  are not associated because the distribution of  is the same in the treated and the untreated. That is, individuals

are selected into the matched population because they have a particular combination of values of  and . The causal

diagram in Figure 6.9 represents the setting of a matched study in which selection  (1: yes, 0: no) is determined by

both  and . The box around  indicates that the analysis is restricted to those selected into the matched cohort

( = 1). According to d-separation rules, there are two open paths between  and  when conditioning on : → 

and  →  ← . Thus one would expect  and  to be associated conditionally on . However, matching ensures

that  and  are not associated (see Chapter 4). Why the discrepancy? Matching creates an association via the path

→  ←  that is of equal magnitude, but opposite direction, as the association via the path → . The net result

is a perfect cancellation of the associations. Matching leads to unfaithfulness.

Finally, faithfulness may be violated when there exist deterministic relations between variables on the graph. Specif-

ically, when two variables are linked by paths that include deterministic arrows, then the two variables are independent

if all paths between them are blocked, but might also be independent even if some paths were open. In this book we

will assume faithfulness unless we say otherwise.

The causal diagrams in this chapter include the treatment , the outcome

 , variables that are conditioned on, any other measured variables that are

necessary to achieve conditional exchangeability (see Chapter 7), and common

causes (whether measured or unmeasured) of any of the above variables. Not

all these variables are created equal. For causal inference purposes, one needs

to differentiate between variables that are and are not potentially intervened

upon.

We have made this distinction throughout the book. For example, the tree

graphs introduced in Chapter 2 have a circle around branchings corresponding

to nontreatment variables  and  ; our discussion on well-defined interventions

in Chapter 3 imposes requirements on the treatment variables  that do not

apply to other variables like, say, ; the “pies” representing sufficient causes in

Chapter 5 distinguish between potential treatments  and  and background

factors  ; etc. In contrast, causal diagrams seems to assign the same status to

all variables in the diagram–in fact this is the case when causal diagrams are
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considered as representations of nonparametric structural equations models as

described in Technical Point 6.2.

The apparently equal status of all variables in causal diagrams may be

misleading, especially when some of those variables are ill-defined: it may be

okay to draw a causal diagram that includes a node for a vaguely defined

unmeasured covariate, but it is critical that the nodes for treatment variables

are precisely defined so that multiple versions do not exist (see Fine Point 1.2).

For example, suppose that we are interested in the causal effect of the

dichotomous treatment , where  = 1 is defined as “exercising at least 30

minutes daily,” and  = 0 is defined as “exercising less than 30 minutes daily.”

Individuals who exercise longer than 30 minutes will be classified as  = 1,

and thus each of the possible durations 30 31 32 minutes can be viewed as a

different version of the treatment  = 1. More formally, let () be a version
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Figure 6.10

of treatment  = . For each individual with  = 1 in the study ( = 1) can

take values 30 31 32  indicating all possible durations of exercise greater or

equal than 30 minutes. For each individual with  = 0 in the study ( = 0)

can take values 0 1 2 29 including all durations of less than 30 minutes. We

refer to  as a compound treatment because multiple values () can be mapped

onto a single value  = . Figure 6.10 shows a causal diagram that includes

both the compound treatment  (the decision node), its versions –a vector

including all the variables ()–, two sets of common causes  and  , and

unmeasured common causes  . Being explicit about the compound treatment

 of interest and its versions () is an important step towards a well defined

causal effect and the identification of adjustment variables.

6.5 A structural classification of bias

We begin by defining bias due to structural reasons–systematic bias–first

for conditional effects, then for marginal effects. For the average causal ef-

fects within levels of , there is conditional bias whenever Pr[ =1| = ] −
Pr[ =0| = ] differs from Pr[ | =   = 1] − Pr[ | =   = 0] for at

least one stratum . That is, there is bias whenever the effect measure (e.g.,

causal risk ratio or difference) and the corresponding association measure (e.g.,

associational risk ratio or difference) are not equal. As discussed in Section 2.3,

conditional exchangeability   q | implies the absence of conditional bias.
The converse is also true: absence of conditional bias implies conditional ex-

changeability.

For the average causal effect in the entire population, we say there is

(unconditional) bias when Pr[ =1 = 1] − Pr[ =0 = 1] 6= Pr[ = 1| =

1]− Pr [ = 1| = 0]. Absence of conditional bias implies that we can obtainUnder faithfulness, the presence of

conditional bias implies the pres-

ence of unconditional bias since

without faithfulness positive bias in

one stratum of  might exactly

cancel the negative bias in another.

an unbiased estimate of the average causal effect in the entire population by,

say, standardization.

When the null hypothesis of no causal effect of treatment on the outcome

holds, but treatment and outcome are associated in the data, we say that

there is bias under the null. In the observational study summarized in Table

3.1, there was bias under the null because the causal risk ratio was 1 whereas

the associational risk ratio was 126.

Bias under the null can result from two different causal structures:

1. Common causes: When the treatment and outcome share a commonBias may also result from (non-

structural) random variability. Seel

Chapter 10.
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cause, the association measure will generally differs from the effect mea-

sure. Epidemiologists use the term confounding to refer to this bias.

2. Conditioning on common effects: This structure is the source of bias that

epidemiologists refer to as selection bias.

There is another possible source of bias under the null: measurement error.

So far we have assumed that all variables–treatment  , outcome  , and

covariates – are perfectly measured. In practice, however, some degree of

measurement error is expected. The bias due to measurement error is referred

to as measurement bias or information bias.

Confounding, selection bias, and measurement bias are described in more

detail in Chapters 7, 8, and 9, respectively. Any causal structure that results

in bias under the null will also cause bias under the alternative (i.e.,when

treatment has an effect on the outcome). However, the converse is not true.

For example, conditioning on a descendant of  may cause bias under the

alternative but not under the null. Further as discussed in Chapter 9, some

forms of measurement error will cause bias under the alternative but not under

the null. In general, we will refer to bias as any structural association between

treatment and outcome that does not arise from the causal effect of treatment

on outcome. Causal diagrams are helpful to represent different sources of

association and thus to sharpen discussions about bias.

The three types of bias–confounding, selection, measurement–may arise

in observational studies, but also in randomized experiments. This may not

be obvious from previous chapters, in which we conceptualized observational

studies as some sort of imperfect randomized experiments, whereas randomized

experiments like the one represented in Figure 6.2 were presented as ideal

studies in which no participants are lost during the follow-up, all participants

adhere to the assigned treatment, and the assigned treatment remains unknown

to both study participants and investigators. We might as well have told you

a fairy tale or a mythological story. Real randomized experiments rarely look

like that. The remaining chapters of Part I will elaborate on the sometimes

fuzzy boundary between experimenting and observing. Specifically, in the next

three chapters we turn our attention to the use of causal diagrams to represent

three classes of biases: bias due to the presence of common causes, bias due

to the selection of individuals, and bias due to the measurement of variables.

Before that, we take a brief detour to describe causal diagrams in the presence

of effect modification.

6.6 The structure of effect modification

Identifying potential sources of bias is a key use of causal diagrams: we can

use our causal expert knowledge to draw graphs and then search for sources of

association between treatment and outcome. Causal diagrams are less helpful

to illustrate the concept of effect modification that we discussed in Chapter 4.
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Figure 6.11

M

N

YA
Figure 6.12

Suppose heart transplant  was randomly assigned in an experiment to

identify the average causal effect of  on death  . For simplicity, let us assume

that there is no bias, and thus Figure 6.2 adequately represents this study.

Computing the effect of  on the risk of  presents no challenge. Because

association is causation, the associational risk difference Pr[ = 1| = 1] −
Pr [ = 1| = 0] can be interpreted as the causal risk difference Pr[ =1 =
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1]−Pr[ =0 = 1]. The investigators, however, want to go further because they

suspect that the causal effect of heart transplant varies by the quality of medical

care offered in each hospital participating in the study. Thus, the investigators

classify all individuals as receiving high ( = 1) or normal ( = 0) quality of

care, compute the stratified risk differences in each level of  as described in

Chapter 4, and indeed confirm that there is effect modification by  on the

additive scale. The causal diagram in Figure 6.11 includes the effect modifier

 with an arrow into the outcome  but no arrow into treatment  (which

is randomly assigned and thus independent of ). Two important caveats.

First, the causal diagram in Figure 6.11 would still be a valid causal diagram

if it did not include because is not a common cause of  and  . It is only
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because the causal question makes reference to  (i.e., what is the average

causal effect of  on  within levels of ?), that needs to be included in the

causal diagram. Other variables measured along the path between “quality of

care” and the outcome  could also qualify as effect modifiers. For example,

Figure 6.12 shows the effect modifier “therapy complications”  , which partly

mediates the effect of  on  .

Second, the causal diagram in Figure 6.11 does not necessarily indicate the

presence of effect modification by  . The causal diagram implies that both 

and  affect death  , but it does not distinguish among the following three

qualitatively distinct ways that  could modify the effect of  on  :

1. The causal effect of treatment  on mortality  is in the same direction

(i.e., harmful or beneficial) in both stratum  = 1 and stratum  = 0.

2. The direction of the causal effect of treatment  on mortality  in stra-

tum  = 1 is the opposite of that in stratum  = 0 (i.e., there is

qualitative effect modification).

3. Treatment  has a causal effect on  in one stratum of  but no causal

effect in the other stratum, e.g.,  only kills subjects with  = 0.

That is, Figure 6.11–as well as all the other figures discussed in this

section–is equally valid to depict a setting with or without effect modification

by  .

In the above example, the effect modifier  had a causal effect on the

outcome. Many effect modifiers, however, do not have a causal effect on the

outcome. Rather, they are surrogates for variables that have a causal effect

on the outcome. Figure 6.13 includes the variable “cost of the treatment”

 (1: high, 0: low), which is affected by “quality of care”  but has itself

no effect on mortality  . An analysis stratified by  will generally detect

effect modification by  even though the variable that truly modifies the effect

of  on  is  . The variable  is a surrogate effect modifier whereas the

variable  is a causal effect modifier (see Section 4.2). Because causal and

surrogate effect modifiers are often indistinguishable in practice, the concept

of effect modification comprises both. As discussed in Section 4.2, some prefer

to use the neutral term “heterogeneity of causal effects,” rather than “effect

modification,” to avoid confusion. For example, someone might be tempted

to interpret the statement “cost modifies the effect of heart transplant onSee VanderWeele and Robins

(2007b) for a finer classification

of effect modification via causal

diagrams.

mortality because the effect is more beneficial when the cost is higher” as an

argument to increase the price of medical care without necessarily increasing

its quality.

A surrogate effect modifier is simply a variable associated with the causal

effect modifier. Figure 6.13 depicts the setting in which such association is
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due to the effect of the causal effect modifier on the surrogate effect modifier.

However, such association may also be due to shared common causes or con-

ditioning on common effects. For example, Figure 6.14 includes the variables

“place of residence” (1: Greece, 0: Rome)  and “passport-defined nation-

ality”  (1: Greece, 0: Rome). Place of residence  is a common cause of

both quality of care  and nationality  . Thus  will behave as a surrogate

effect modifier because  is associated with the causal effect modifier  . An-

other example: Figure 6.15 includes the variables “cost of care”  and “use

of bottled mineral water (rather than tap water) for drinking at the hospital”

 . Use of mineral water  affects cost  but not mortality  in developed

countries. If the study were restricted to low-cost hospitals ( = 0), then use

of mineral water  would be generally associated with medical care  , andSome intuition for the association

between and in low-cost hos-

pitals  = 0: suppose that low-

cost hospitals that use mineral wa-

ter need to offset the extra cost of

mineral water by spending less on

components of medical care that

decrease mortality. Then use of

mineral water would be inversely

associated with quality of medical

care in low-cost hospitals.

thus  would behave as a surrogate effect modifier. In summary, surrogate

effect modifiers can be associated with the causal effect modifier by structures

including common causes, conditioning on common effects, or cause and effect.

Causal diagrams are in principle agnostic about the presence of interaction

between two treatments  and . However, causal diagrams can encode infor-

mation about interaction when augmented with nodes that represent sufficient-

component causes (see Chapter 5), i.e., nodes with deterministic arrows from

the treatments to the sufficient-component causes. Because the presence of

interaction affects the magnitude and direction of the association due to con-

ditioning on common effects, these augmented causal diagrams are discussed

in Chapter 8.
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Fine Point 6.3

D-separation. We now define a graphical relationship between variables on a DAG known as d-separation (‘d-’ stands

for directional). The importance of d-separation is the following result: Given a DAG G and a distribution over its nodes,

suppose each variable is independent of its non-descendants conditional on its parents. Then if the two sets of variables

are d-separated given a third set, the two sets are conditionally independent given the third (i.e., independent within

every joint stratum of the third variables).

To define d-separation, we first define the terms “path” and “blocked path.” A path is a sequence of edges

connecting two variables on the graph (with each edge occurring only once). We define a path to be either blocked or

open according to the following graphical rules.

1. If there are no variables being conditioned on, a path is blocked if and only if two arrowheads on the path collide

at some variable on the path. For example, in Figure 6.1, the path  →  →  is open, whereas the path

 →  ←  is blocked because two arrowheads on the path collide at  . We call  a collider on the path

→  ← .

2. Any path that contains a noncollider that has been conditioned on is blocked. For example, in Figure 6.5, the

path between  and  is blocked after conditioning on . We use a square box around a variable to indicate

that we are conditioning on it.

3. A collider that has been conditioned on does not block a path. For example, in Figure 6.7, the path between 

and  is open after conditioning on .

4. A collider that has a descendant that has been conditioned on does not block a path. For example, in Figure 6.8,

the path between  and  is open after conditioning on , a descendant of the collider .

Rules 1—4 can be summarized as follows. A path is blocked if and only if it contains a noncollider that has been

conditioned on, or it contains a collider that has not been conditioned on and has no descendants that have been

conditioned on.

Two variables are said to be d-separated if all paths between them are blocked (otherwise they are d-connected).

Two sets of variables are said to be d-separated if each variable in the first set is d-separated from every variable in

the second set. Thus,  and  are not marginally independent (d-connected) in Figure 6.1 because there is one open

path between them ( → ), despite the other path ( →  ← )’s being blocked by the collider  . In Figure 6.4,

however,  and  are marginally independent (d-separated) because the only path between them is blocked by the

collider . In Figure 6.5, we conclude that  is conditionally independent of  , given . From Figure 6.7 we infer that

 is not conditionally independent of  , given , and from Figure 6.8 we infer that  is not conditionally independent

of  , given .

The d-separation rules to infer associational statements from causal diagrams were formalized by Pearl (1995). A

mathematically equivalent set of graphical rules, known as “moralization”, was developed by Lauritzen et al. (1990).
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Chapter 7
CONFOUNDING

Suppose an investigator conducted an observational study to answer the causal question “does one’s looking up to

the sky make other pedestrians look up too?” She found an association between a first pedestrian’s looking up and

a second one’s looking up. However, she also found that pedestrians tend to look up when they hear a thunderous

noise above. Thus it was unclear what was making the second pedestrian look up, the first pedestrian’s looking

up or the thunderous noise? She concluded the effect of one’s looking up was confounded by the presence of a

thunderous noise.

In randomized experiments treatment is assigned by the flip of a coin, but in observational studies treatment

(e.g., a person’s looking up) may be determined by many factors (e.g., a thunderous noise). If those factors affect

the risk of developing the outcome (e.g., another person’s looking up), then the effects of those factors become

entangled with the effect of treatment. We then say that there is confounding, which is just a form of lack of

exchangeability between the treated and the untreated. Confounding is often viewed as the main shortcoming of

observational studies. In the presence of confounding, the old adage “association is not causation” holds even if the

study population is arbitrarily large. This chapter provides a definition of confounding and reviews the methods

to adjust for it.

7.1 The structure of confounding

Confounding is the bias that arises when the treatment and the outcome share

a cause. The structure of confounding can be represented by using causal

diagrams. For example, the diagram in Figure 7.1 (same as Figure 6.1) depicts
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Figure 7.1

a treatment , an outcome  , and their shared (or common) cause . This

diagram shows two sources of association between treatment and outcome: 1)

the path  →  that represents the causal effect of  on  , and 2) the path

 ←  →  between  and  that is mediated by the common cause . In

graph theory, the path ← →  that links  and  through their common

cause  is an example of a backdoor path.

If the common cause  did not exist in Figure 7.1, then the only path

between treatment and outcome would be  →  , and thus the entire asso-In a causal DAG, a backdoor path

is a noncausal path between treat-

ment and outcome that remains

even if all arrows pointing from

treatment to other variables (in

graph-theoretic terms, the descen-

dants of treatment) are removed.

That is, the path has an arrow

pointing into treatment.

ciation between  and  would be due to the causal effect of  on  . That

is, the associational risk ratio Pr [ = 1| = 1] Pr [ = 1| = 0] would equal
the causal risk ratio Pr

£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
; association would be cau-

sation. But the presence of the common cause  creates an additional source of

association between the treatment  and the outcome  , which we refer to as

confounding for the effect of  on  . Because of confounding, the associational

risk ratio does not equal the causal risk ratio; association is not causation.

Examples of confounding abound in observational research. Consider the

following examples of confounding for the effect of various kinds of treatments

on health outcomes:

• Occupational factors: The effect of working as a firefighter  on the risk
of death  will be confounded if “being physically fit”  is a cause of

both being an active firefighter and having a lower mortality risk. This
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bias, depicted in the causal diagram in Figure 7.1, is often referred to as

a healthy worker bias.

• Clinical decisions: The effect of drug  (say, aspirin) on the risk of

disease  (say, stroke) will be confounded if the drug is more likely to

be prescribed to individuals with certain condition  (say, heart disease)

that is both an indication for treatment and a risk factor for the disease.

Heart disease  is a risk factor for stroke  because  has a direct causal

effect on  as in Figure 7.1 or, as in Figure 7.2, because both  and 
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are caused by atherosclerosis  , an unmeasured variable. This bias is

known as confounding by indication or channeling, the last term often

being reserved to describe the bias created by patient-specific risk factors

 that encourage doctors to use certain drug  within a class of drugs.

• Lifestyle: The effect of behavior  (say, exercise) on the risk of  (say,

death) will be confounded if the behavior is associated with another be-

havior  (say, cigarette smoking) that has a causal effect on  and tends

to co-occur with . The structure of the variables , , and  is de-

picted in the causal diagram in Figure 7.3, in which the unmeasured
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Figure 7.3

variable  represents the sort of personality and social factors that lead

to both lack of exercise and smoking. Another frequent problem: sub-

clinical disease  results both in lack of exercise  and an increased risk

of clinical disease  . This form of confounding is often referred to as

reverse causation.

• Genetic factors: The effect of a DNA sequence  on the risk of developing
certain trait  will be confounded if there exists a DNA sequence  that

has a causal effect on  and is more frequent among people carrying .

This bias, also represented by the causal diagram in Figure 7.3, is known

as linkage disequilibrium or population stratification, the last term often

being reserved to describe the bias arising from conducting studies in a

mixture of individuals from different ethnic groups. Thus the variable

 can stand for ethnicity or other factors that result in linkage of DNA

sequences.

• Social factors: The effect of income at age 65  on the level of disability
at age 75  will be confounded if the level of disability at age 55  affects

both future income and disability level. This bias may be depicted by

the causal diagram in Figure 7.1.

• Environmental exposures: The effect of airborne particulate matter  on
the risk of coronary heart disease  will be confounded if other pollutants

 whose levels co-vary with those of  cause coronary heart disease. This

bias is also represented by the causal diagram in Figure 7.3, in which the

unmeasured variable  represent weather conditions that affect the levels

of all types of air pollution.

In all these cases, the bias has the same structure: it is due to the pres-

ence of a common cause ( or ) of the treatment  and the outcome  or,Some authors prefer to replace the

unmeasured common cause  (and

the two arrows leaving it) by a bidi-

rectional edge between the mea-

sured variables that  causes.

equivalently, to the presence of an unblocked backdoor path between  and

 . We refer to the bias caused by common causes as confounding, and we

use other names to refer to biases caused by structural reasons other than the

presence of common causes. For example, we say that selection bias is the

result of conditioning on common effects. For simplicity of presentation, we

assume throughout this chapter that other sources of bias (e.g., selection bias,

measurement error, and random variability) are absent.
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7.2 Confounding and identifiability of causal effects

With confounding structurally defined as the bias resulting from the presence

of common causes of treatment and outcome, the next question is: under what

conditions can confounding be eliminated in the analysis? In other words, in

the absence of measurement error and selection bias, under what conditions

can the causal effect of treatment  on outcome  be identified? An important

result from graph theory, known as the backdoor criterion, is that the causalPearl (1995) proposed the backdoor

criterion for nonparametric identifi-

cation of causal effects. All back-

door paths are blocked if treatment

and outcome are d-separated given

the measured covariates in a graph

in which the arrows out of  are

removed.

effect of treatment  on the outcome  is identifiable if all backdoor paths

between them can be blocked by conditioning on variables that are not affected

by–non-descendants of–treatment .

Thus the two settings in which causal effects are identifiable are

1. No common causes. If, like in Figure 6.2, there are no common causes

of treatment and outcome, and hence no backdoor paths that need to be

blocked, we say that there is no confounding.

2. Common causes but enough measured variables (that are non-descendants

of treatment) to block all backdoor paths. If, like in Figure 7.1, the back-

door path through the common cause  can be blocked by conditioning

on some measured covariates (in this example,  itself), we say that there

is confounding but no unmeasured confounding.

The first setting is expected in marginally randomized experiments in which

all subjects have the same probability of receiving treatment. In these experi-

ments confounding is not expected to occur because treatment is solely deter-

mined by the flip of a coin–or its computerized upgrade, the random number

generator–and the flip of the coin cannot be a cause of the outcome.Early statistical descriptions of con-

founding were provided by Yule

(1903) for discrete variables and by

Pearson et al. (1899) for contin-

uous variables. Yule described the

association due to confounding as

“ficticious”, “illusory”, and “appar-

ent”. Pearson et al. referred to it as

a “spurious” correlation. However,

there is nothing ficticious, illusory,

apparent, or spurious about the as-

sociation between two variables due

to their common causes. Associ-

ations due to common causes are

quite real associations, though they

cannot be causally interpreted. Or,

in Yule’s words, they are associa-

tions “to which the most obvious

physical meaning must not be as-

signed.”

The second setting is expected in conditionally randomized experiments in

which the probability of receiving treatment is the same for all subjects with

the same value of risk factor  but, by design, this probability varies across

values of . The design of these experiments guarantees the presence of con-

founding, because  is a common cause of treatment and outcome, but in these

experiments confounding is not expected conditional on–within levels of–the

covariates . This second setting is also what one hopes for in observational

studies in which many variables  have been measured.

The backdoor criterion answers three questions: 1) does confounding exist?,

2) can confounding be eliminated?, and 3) what variables are necessary to

eliminate the confounding? The answer to the first question is affirmative if

there exist unblocked backdoor paths between treatment and outcome; the

answer to the second question is affirmative if all those backdoor paths can

be blocked using the measured variables; the answer to the third question is

any minimal set of variables that, when conditioned on, block all backdoor

paths. The backdoor criterion, however, does not answer questions regarding

the magnitude or direction of confounding (see Fine Point 7.3 for more on this

topic). It is logically possible that some unblocked backdoor paths are weak

(e.g., if  does not have a large effect on either  or  ) and thus induce little

bias, or that several strong backdoor paths induce bias in opposite directions

and thus result in a weak net bias.

In Chapter 4 we described how the causal effect of interest can be identified–

via standardization or IP weighting–in the presence of confounding when the

appropriate variables are measured. The variables that are used to standardize

or IP weight are often referred to as confounders. We now review the definition

of confounder and some criteria to select them.
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7.3 Confounders

Confounding is the bias that results from the presence of common causes of–

open backdoor paths between–treatment  and outcome  . It is then natural

to define a confounder as a variable that, possibly in conjunction with other

variables, can be used to block all backdoor paths between treatment and

outcome. To provide a more formal definition of confounder, we first need to

define a sufficient set for confounding adjustment as a set of non-descendants

of treatment  = ( ) that includes enough variables to block all otherwise

open backdoor paths. Then the variable  is a confounder given data on the

variables  if  = ( ) is a sufficient set but  , or any subset of  , is not.This formal definition of con-

founder is mathematically equiva-

lent to the non-graphical definition

proposed by Robins and Morgen-

stern (1987, Section 2H). For addi-

tional discussion, see VanderWeele

and Shpitser (2013).

If  is the empty set, then we simply say that  =  is a confounder.

In contrast with this structural–or counterfactual–definition, a confounder

was traditionally defined as any variable that meets the following three con-

ditions: 1) it is associated with the treatment, 2) it is associated with the

outcome conditional on the treatment (with “conditional on the treatment”

often replaced by “in the untreated”), and 3) it does not lie on a causal path-

way between treatment and outcome. According to this traditional definition,

all so defined confounders should be adjusted for in the analysis. However, this

traditional definition of confounder may lead to inappropriate adjustment for

confounding. To see why, let us compare the structural and traditional defini-An informal definition: ‘A con-

founder is any variable that can be

used to help eliminate confound-

ing.’

Note this definition is not circu-

lar because we have previously pro-

vided a definition of confounding.

Another example of a non-circular

definition: “A musician is a person

who plays music,” stated after we

have defined what music is.

tions of confounder in Figures 7.1-7.4. For simplicity, these four figures depict

settings in which investigators need no data beyond the measured variables 

for confounding adjustment (with  being the empty set), and in which the

variables  are affected by neither the treatment  nor the outcome  .

In Figure 7.1 there is confounding because the treatment  and the outcome

 share the cause , i.e., because there is a backdoor path between  and 

through . However, this backdoor path can be blocked by conditioning on

. Thus, if the investigators collected data on  for all individuals, there is

no unmeasured confounding given . We say that  is a confounder because

it is needed to eliminate confounding. Let us now turn to the traditional

definition of confounder. The variable  is associated with the treatment

(because it has a causal effect on ), is associated with the outcome conditional

on the treatment (because it has a direct effect on  ), and it does not lie on

the causal pathway between treatment and outcome. Then, according to the

traditional definition,  is a confounder and it should be adjusted for. There is

no discrepancy between the structural and traditional definitions of confounder

under the causal diagram in Figure 7.1.

In Figure 7.2 there is confounding because the treatment  and the outcome

 share the cause  , i.e., there is a backdoor path between  and  through

 . (Unlike the variables , , and  , we suppose that the variable  was

not measured by the investigators.) This backdoor path could be theoretically

blocked, and thus confounding eliminated, by conditioning on  , had data on

this variable been collected. However, this backdoor path can also be blocked

by conditioning on . Thus, there is no unmeasured confounding given .

We say that  is a confounder because it is needed to eliminate confounding,

even though the confounding resulted from the presence of  . Let us now

turn to the traditional definition of confounder. The variable  is associated

with the treatment (because it has a causal effect on ), is associated with

the outcome conditional on the treatment (because it shares the cause  with

 ), and it does not lie on the causal pathway between treatment and outcome.

Then, according to the traditional definition,  is a confounder and it should

be adjusted for. Again, there is no discrepancy between the structural and
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traditional definitions of confounder in Figure 7.2.

In Figure 7.3 there is also confounding because the treatment  and the

outcome  share the cause  , and the backdoor path can also be blocked by

conditioning on . Therefore there is no unmeasured confounding given ,

and we say that  is a confounder. According to the traditional definition, 

is also a confounder and should be adjusted for because  is associated with

the treatment (it shares the cause  with ), is associated with the outcome

conditional on the treatment (it has a causal effect on  ), and it does not lie

on the causal pathway between treatment and outcome. Again, there is no
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Figure 7.4

The bias induced in Figure 7.4

was described by Greenland et al

(1999), and referred to as M-

bias (Greenland 2003) because the

structure of the variables involved

in it–2  1–resembles a letter

M lying on its side.

discrepancy between the structural and traditional definitions of confounder

for the causal diagram in Figure 7.3.

The key figure is Figure 7.4. In this causal diagram there are no common

causes of treatment  and outcome  , and therefore there is no confounding.

The backdoor path between  and  through  (← 2 → ← 1 →  ) is

blocked because  is a collider on that path. Thus all the association between

 and  is due to the effect of  on  : association is causation. There is no

need to adjust for . (Adjustment for either 1 or 2 is impossible, as these are

unmeasured variables.) In fact, adjustment for  by stratification would induce

bias because conditioning on  would open the otherwise blocked backdoor

path between  and  . This implies that, although there is no unconditional

bias, there is conditional bias for at least one stratum of . We refer to this

bias as selection bias because it arises from selecting a particular stratum of 

in which the association between  and  is calculated.

Though there is no confounding,  meets the criteria for a traditional con-

founder: it is associated with the treatment (it shares the cause 2 with ),
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Figure 7.5

Figure 7.5 is another example in

which, in the absence of confound-

ing, the traditional criteria lead to

selection bias due to adjustment for

. The traditional criteria would

not have resulted in bias had condi-

tion 3) been replaced by the condi-

tion that the variable is not caused

by treatment, i.e., it is a non-

descendant of .

it is associated with the outcome conditional on the treatment (it shares the

cause 1 with  ), and it does not lie on the causal pathway between treatment

and outcome. Hence, according to the traditional definition,  is considered a

confounder that should be adjusted for, even in the absence of confounding!

The result of trying to adjust for the nonexistent confounding would be

selection bias. For example, suppose  represents physical activity,  cervical

cancer, 1 a pre-cancer lesion,  a diagnostic test (Pap smear) for pre-cancer,

and 2 a health-conscious personality (more physically active, more visits to

the doctor). Then, under the causal diagram in Figure 7.4, the effect of physical

activity  on cancer  is unconfounded and there is no need to adjust for .

But let us say that one decides to adjust for  by, for example, restricting the

analysis to women with a negative test ( = 0). Conditioning on the collider 

opens the backdoor path between  and  (← 2 → ← 1 →  ), which

was previously blocked by the collider itself. Thus the association between

 and  would be a mixture of the association due to the effect of  on 

and the association due to the open backdoor path. Association would not be

causation any more.

We have described an example in which the standard definition of con-

founder fails because it misleads investigators into adjusting for a variable

when adjustment for such variable is not only superfluous but also harmful.

This problem arises because the standard definition treats the concept of con-

founder, rather than that of confounding, as the primary concept. In contrast,

the structural definition first establishes the presence of confounding–common

causes–and then identifies the confounders that are necessary to adjust for

confounding in the analysis. Confounding is an absolute concept–common

causes of treatment and outcome either exist or do not exist in a particular

region of the universe–whereas confounder is a relative one– may be needed

to block a backdoor path only when  is not measured.



88 Causal Inference

Fine Point 7.1

Surrogate confounders and time-varying confounders. Consider now the causal diagram in Figure 7.6. There is

confounding for the effect of  on  because of the presence of the unmeasured common cause  . The measured

variable  is a proxy or surrogate for  . For example, the unmeasured variable socioeconomic status  may confound

the effect of physical activity  on the risk of cardiovascular disease  . Income  is a surrogate for the often ill-defined

variable socioeconomic status. Should we adjust for the variable ? On the one hand,  is not a confounder (it does

not lie on a backdoor path between  and  ). On the other hand, adjusting for the measured , which is associated

with the unmeasured  , may indirectly adjust for some of the confounding caused by  . In the extreme, if  were

perfectly correlated with  then it might make no difference whether one conditions on  or on  . Indeed if  is binary

and is a nondiferentially missclassified (see Chapter 9) version of  , conditioning on  will result in a partial blockage of

the backdoor path ←  →  under some weak conditions (Ogburn and VanderWeele 2012). Therefore we will often

prefer to adjust, rather than not to adjust, for . We refer to nonconfounders that can be used to reduce confounding

bias as surrogate confounders. A strategy to fight confounding is to measure as many surrogate confounders as possible

and adjust for all of them.

Causal diagrams in this chapter include only fixed treatments that do not vary over time, but the structural definitions

of confounding and confounders can be generalized to the case of time-varying treatments. When the treatment is time-

varying, then so can be the confounders. A time-varying confounder is a time-varying variable that can be used to

help eliminate confounding for the effect of a time-varying treatment. A time-varying surrogate confounder is a time-

varying nonconfounder that can be used to reduce confounding for a time-varying treatment. Settings with time-varying

confounders and treatments make it even clearer why the traditional definition of confounding, and the conventional

methods for confounding adjustment, may result in selection bias. The bias of convenional methods is described in Part

III.

Furthermore, our example shows that confounding is a causal concept and

that associational or statistical criteria are insufficient to characterize con-

founding. The standard definition of confounder that relies almost exclusively

on statistical considerations may lead, as shown by Figure 7.4, to the wrong

advice: adjust for a “confounder” even when confounding does not exist. In

contrast, the structural definition of confounding emphasizes that causal infer-

ence from observational data requires a priori causal assumptions or beliefs,

which are derived from subject-matter knowledge rather than statistical as-

sociations detected in the data. One important advantage of the structural
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Figure 7.6

definition is that it prevents inconsistencies between beliefs and actions. For

example, if you believe Figure 7.4 is the true causal diagram–and therefore

that there is no confounding for the effect of  on –then you will not adjust

for the variable .

A final note on the traditional definition of confounder. In an attempt to

eliminate the problem described for Figure 7.4, some authors have proposed a

modified definition of confounder that replaces the traditional condition “2) it

is associated with the outcome conditional on the treatment” by the condition

“2) it is a cause of the outcome.” This modified definition of confounder indeed

prevents inappropriate adjustment for  in Figure 7.4, but only to create a new

problem by not considering  a confounder–that needs to be adjusted for–in

Figure 7.2. Thus this modification of the traditional definition of confounder

may lead to lack of adjustment for confounding.
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Technical Point 7.1

Fixing the traditional definition of confounder. Figures 7.4 and 7.5 depict two examples in which the traditional

definition of confounder misleads investigators into adjusting for a variable when adjustment for such variable is not

only superfluous but also harmful. The traditional definition fails because it relies on two incorrect statistical criteria–

conditions 1) and 2)–and one incorrect causal criterion–condition 3). To “fix” the traditional definition one needs to

do two things:

1. Replace condition 3) by the condition that “there exist variables  and  such that there is conditional exchange-

ability within their joint levels   q| . If this new condition holds, it will quite generally be the case that 
is not on a causal pathway between  and  .

2. Replace conditions 1) and 2) by the following condition:  can be decomposed into two disjoint subsets 1 and

2 (i.e.,  = 1 ∪ 2 and 1 ∩ 2 is empty) such that (i) 1 and  are not associated within strata of , and

(ii) 2 and  are not associated within joint strata of , , and 1. The variables in 1 may be associated with

the variables in 2. 1 can always be chosen to be the largest subset of  that is unassociated with treatment.

If these two new conditions are met we say  is a confounder and  is a non-confounder given data on . These

conditions were proposed by Robins (1997,Theorem 4.3) and further discussed by Greenland, Pearl, and Robins (1999,

pp. 45-46, note the condition that  = 1 ∪2 was inadvertently left out). These conditions generalize the traditional
definition of confounder to overcome the difficulties found in Figures 7.4 and 7.5. For example, Greenland, Pearl, and

Robins applied these conditions to Figure 7.4 to show that there is no confounding.

7.4 Confounding and exchangeability

So far we have defined confounding in terms of common causes of–open back-

door paths between–treatment and outcome. It is also possible to provide a

definition of confounding strictly in terms of counterfactuals, with no explicit

reference to common causes, in the absence of bias caused by selection (Chap-

ter 8) or measurement (Chapter 9). In fact, that is precisely what we did in

previous chapters in which we described the (confounding) bias that resultsSee Greenland and Robins (1986,

2009) for a detailed discussion on

the relations between identifiability,

exchangeability, and confounding

from lack of exchangeability of the treated and the untreated.

When the treatment is unconditionally and randomly assigned, the treated

and the untreated are expected to be exchangeable because no common causes

exist. Marginal exchangeability, i.e.,  q, is equivalent to no confounding by
either measured or unmeasured covariates. The average causal effect E[ =1]−
E[ =0] is calculated without adjustment for any variables.

When the treatment is assigned at random but conditionally on the prog-

nostic factors , the treated and the untreated are not expected to be ex-

changeable because the variables in  become common causes of treatment

and outcome. Take our heart transplant study, a conditionally randomized

experiment, as an example. Individuals who received a transplant ( = 1)

are different from the untreated ( = 0) because, if the treated had remained

untreated, their risk of death  would have been higher than that of those that

were actually untreated–the treated had a higher frequency of severe heart

disease , a common cause of  and  . Thus the consequence of common

causes of treatment and outcome is that the treated and the untreated are

not marginally exchangeable. In conditionally randomized experiments, the

treated and the untreated are expected to be conditionally exchangeable given

, i.e.,  q|. Then the average causal effect in any stratum  of  is given

by the stratum-specific risk difference E[ =1| = ]− E[ =0| = ]. There-
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fore the average causal effect E[ =1]−E[ =0]may be calculated by adjusting

for the measured variables  via standardization. We say that there is no resid-Under conditional exchangeability,

E[ =1]− E[ =0] =P
 E[ | =   = 1]Pr [ = ]−P
 E[ | =   = 0]Pr [ = ].

ual confounding whose elimination would require adjustment for unmeasured

variables. For brevity, we say that there is no unmeasured confounding.

If conditioning on a set of variables  (that are non-descendants of )

blocks all backdoor paths, then the treated and untreated are exchangeable

within levels of , i.e.,  is a sufficient set for confounding adjustment (seeA formal proof of this result was

given by Pearl (2000). the previous section). To a non-mathematician such a result seems rather

magical as there appears to be no obvious relationship between counterfactual

independences and the absence of back door paths because counterfactuals are

not included as variables on a causal graph. A new type of graphs–Single

World Intervention Graphs (SWIGs)–seamlessly unify the counterfactual andSWIGs overcome the shortcomings

of previously proposed twin causal

diagrams (Balke and Pearl 1994).

graphical approaches by explicitly including the counterfactual variables on

the graph. The SWIG depicts the variables and causal relations that would be

observed in a hypothetical world in which all subjects received treatment level

. That is, a SWIG is a graph that represents a counterfactual world created

by a single intervention. In contrast, a standard causal diagram represents the

variables and causal relations that are observed in the actual world. A SWIG

can be viewed as a function that transforms a given causal diagram under a

given intervention. The following examples describe this transformation.

L YaA | a

U

Figure 7.7

L A

U2

U1

| a Ya

Figure 7.8

Suppose the causal diagram in Figure 7.2 represents the observed study

data. The SWIG in Figure 7.7 is a transformation of Figure 7.2 that represents

the data from a hypothetical intervention in which all subjects receive the same

treatment level . The treatment node is split into left and right sides. The

right side encodes the treatment value  under the intervention; the left side

encodes the value of treatment  that would have been observed in the absence

of intervention, i.e., the natural value of treatment. Note that  is not a cause–

does not have an arrow into– because the value  is the same for all subjects.

The outcome is  , the value of  in the hypothetical study. The remaining

variables are temporally prior to . Thus these variables and  take the same

value as in the observational study. Conditional exchangeability   q |
holds because, on the SWIG, all paths between   and  are blocked after

conditioning on .

Consider now the causal diagram in Figure 7.4 and the SWIG in Figure

7.8. Marginal exchangeability   q  holds because, on the SWIG, all paths

between   and  are blocked (without conditioning on ). In contrast,

conditional exchangeability   q | does not hold because, on the SWIG,

the path   ←− 1 −→  ←− 2 −→  is open when the collider  is

conditioned on. This is why the marginal - association is causal, but the

conditional - association given  is not, and thus any method that adjusts

for  results in bias. These examples show how SWIGs unify the counterfactual

and graphical approaches. See also Fine Point 7.2.

Knowledge of the causal structure is a prerequisite to determine the existence
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Figure 7.9

of confounding and label a variable as a confounder, and thus to decide which

variables need to be measured and adjusted for. In observational studies, inves-

tigators measure many variables  in an attempt to ensure that the treated and

the untreated are conditionally exchangeable given the measured covariates .

The underlying assumption is that, even though common causes may exist

(confounding), the measured variables  are sufficient to block all backdoor

paths (no unmeasured confounding). Of course, there is no guarantee that

the assumption of no unmeasured confounding is true, which makes causal

inference from observational data a risky undertaking.

There is a scientific consequence to the potential confounding in observa-
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Fine Point 7.2

SWIGs verify that confounders cannot be descendants of treatment. Consider the causal DAG in Figure 7.9. 

is a descendant of treatment  that blocks all backdoor paths from  to  . Unlike in Figures 7.4 and 7.5, conditioning

on  does not cause selection bias because no collider path is opened. Rather, because the causal effect of  on  is

solely through the intermediate variable , conditioning on  completely blocks this pathway. This example shows that

adjusting for a variable  that blocks all backdoor paths does not eliminates bias when  is a descendant of .

Since conditional exchangeability   q | implies the adjustment for  eliminates all bias, it must be the case
thatconditional exchangeability fails to hold and the average treatment effect E[ =1]−E[ =0] cannot be identified in

this example. This failure can be verified by analyzing the SWIG in Figure 7.10, which depicts a counterfactual world in

which  has been set to the value . In this world, the factual variable  is replaced by the counterfactual variable ,

that is, the value of  that would have been observed if all individuals had received treatment value . Since  blocks

all paths from   to  we conclude that   q | holds, but we cannot conclude that conditional exchangeabilty
  q | holds as  is not even on the graph. (Under an FFRCISTG, any independence that cannot be read off the
SWIG cannot be assumed to hold.) Therefore, we cannot ensure that the average treatment effect E[ =1]−E[ =0]

is identified from data on (  ).

tional studies. Suppose you conducted an observational study to identify the

effect of heart transplant  on death  and that you assumed no unmea-

sured confounding given disease severity . A critic of your study says “the
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Figure 7.10

inferences from this observational study may be incorrect because of potential

confounding.” The critic is not making a scientific statement, but a logical one.

Since the findings from any observational study may be confounded, it is ob-

viously true that those of your study can be confounded. If the critic’s intent

was to provide evidence about the shortcomings of your particular study, he

failed. His criticism is completely noninformative because he simply restated

a characteristic of observational research that you (and apparently he) already

knew before the study was conducted.

To appropriately criticize your study, the critic needs to work harder and

engage in a truly scientific conversation. For example, the critic may citeAdditional conditions (e.g., no bias

due to selection or measurement)

are required for valid causal infer-

ence from observational data. But,

unlike the expectation of no unmea-

sured confounding, these additional

conditions may fail to hold in both

observational studies and random-

ized experiments.

experimental or observational findings that contradict your findings, or he can

say something along the lines of “the inferences from this observational study

may be incorrect because of potential confounding due to cigarette smoking,

a common cause through which a backdoor path may remain open”. This

latter option provides you with a testable challenge to your assumption of no

unmeasured confounding. The burden of the proof is again yours. Your next

move is to try and adjust for smoking.

The next section reviews the methods to adjust, or control for, confounding

when, as in Figures 7.1-7.3, enough confounders  are measured to block all

backdoor paths between treatment and outcome.

An important point. We have referred to unmeasured confounding as an

“all or nothing” issue: either bias exists or it doesn’t. In practice, however, it

is important to consider the expected direction and magnitude of the bias. See

Fine Point 7.4.
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Fine Point 7.3

Identifying assumptions represented in causal diagrams. Exchangeability, positivity, and consistency are conditions

required for causal inference via standardization or IP weighting. Positivity is roughly translated into graph language

as the condition that the arrows from the nodes  to the treatment node  are not deterministic. A more precise

discussion is given by Richardson and Robins (2013). Consistency and well-defined interventions means that the arrow

from treatment  to outcome  corresponds to a possibly hypothetical but relatively unambiguous intervention. In the

causal diagrams discussed in this book, positivity is implicit unless otherwise specified, and consistency is embedded in

the notation because we only consider treatment nodes with relatively well-defined interventions. Note that positivity is

concerned with arrows into the treatment nodes, and well-defined interventions are only concerned with arrows leaving

the treatment nodes. Thus, the treatment nodes are implicitly given a different status compared with all other nodes.

Some authors make this difference explicit by including decision nodes in causal diagrams, which are then referred to as

influence diagrams (Dawid 2002). The different status of treatment nodes compared with other nodes was also explicit

in the causal trees introduced in Chapter 2, in which non-treatment branches were enclosed in circles (Robins 1986).

Exchangeability is translated into graph language as the lack of open paths between the treatment  and outcome

 nodes, other than those originating from , that would result in an association between  and  . Chapters 7—9

describe different ways in which lack of exchangeability can be represented in causal diagrams. For example, in this

chapter we discuss confounding, a violation of exchangeability due to the presence of common causes of treatment

and outcome, and unmeasured confounding, a violation of conditional exchangeability given  due to arrows from

unmeasured common causes  of the outcome  to treatment .

7.5 How to adjust for confounding

Randomization is the preferred method to control confounding because a ran-

dom assignment of treatment is expected to produce exchangeability of the

treated and the untreated, either marginally or conditionally. In marginally

randomized experiments, no common causes of treatment and outcome are

expected to exist and thus the unadjusted association measure is expected

to equal the effect measure. In conditionally randomized experiments given

covariates , the common causes (i.e., the covariates ) are measured and

thus the adjusted (via standardization or IP weighting) association measure

is expected to equal the effect measure. Subject-matter knowledge to identify

adjustment variables is unnecessary in ideal randomized experiments.

On the other hand, subject-matter knowledge is key in observational stud-

ies in order to identify and measure adjustment variables . Causal inferenceA practical example of the applica-

tion of expert knowledge to con-

founding evaluation was described

by Hernán et al (2002).

from observational data relies on the uncheckable assumption that the mea-

sured variables  are not caused by treatment and are sufficient to block all

backdoor paths–the assumption of no unmeasured confounding or of condi-

tional exchangeability. But, as discussed in Section 4.6, standardization and

IP weighting are not the only methods used to adjust for confounding in ob-

servational studies. Methods for confounding adjustment can be classified into

the two following categories:

• G-methods: Standardization, IP weighting, G-estimation (see Chapter
14). Methods that exploit conditional exchangeability in subsets definedThe ‘g’ in g-methods stands for

‘generalized’. Unlike conventional

stratification-based methods, g-

methods can generally be used to

estimate the effects of time-varying

treatments as described in Part III.

by  to estimate the causal effect of  on  in the entire population or

in any subset of the population. In our heart transplant study, we used

g-methods to adjust for confounding by disease severity  in Sections 2.4

(standardization) and 2.5 (IP weighting). The causal risk ratio in the

population was 1.

• Stratification-based methods: Stratification, Restriction, Matching. Meth-
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ods that exploit conditional exchangeability in subsets defined by  to

estimate the association between  and  in those subsets only. In our

heart transplant study, we used stratification-based methods to adjust for

confounding by disease severity  in Sections 4.4 (stratification, restric-

tion) and 4.5 (matching). The causal risk ratio was 1 in all the subsets

of the population that we studied.

Under the assumption of conditional exchangeability given , g-methods

simulate the - association in the population if backdoor paths involvingThe parametric and semiparamet-

ric extensions of g-methods are the

parametric g-formula (standardiza-

tion), IP weighting of marginal

structural models, and g-estimation

of nested structural models. The

parametric and semiparametric ex-

tension of stratification is conven-

tional regression. See Part II.

the measured variables  did not exist; the simulated - association can

then be entirely attributed to the effect of  on  . IP weighting achieves this

by creating a pseudo-population in which treatment  is independent of the

measured confounders , that is, by “deleting” the arrow from  to . The

practical implications of “deleting” the arrow from measured confounders  to

treatment  will become apparent when we discuss time-varying treatments

and confounders in Part III.

Stratification-based methods estimate the association between treatment

and outcome in one or more subsets of the population in which the treated

and the untreated are assumed to be exchangeable. Hence the - associationA common variation of restric-

tion, stratification, and matching

replaces each individual’s measured

variables  by the individual’s esti-

mated probability of receiving treat-

ment Pr [ = 1|]: the propen-

sity score (Rosenbaum and Rubin

1983). See Chapter 15.

in each subset is entirely attributed to the effect of  on  . In graph terms,

stratification/restriction do not delete the arrow from  to  but rather com-

pute the conditional effect in a subset of the observed population (in which

there is an arrow from  to ), which is represented by adding a box around

variable . Matching works by computing the effect in a selected subset of the

observed population, which is represented by adding a selection node that is

conditioned on (see Fine point 6.1 and Chapter 8).

All the above methods require conditional exchangeability given the mea-

sured covariates  to identify the effect of treatment  on outcome  , i.e., the

condition that the investigator has measured enough variables  to block allTechnically, g-estimation requires

the slightly weaker assumption that

the magnitude of unmeasured con-

founding given  is known, of which

the assumption of no unmeasured

confounding is a particular case.

See Chapter 14.

backdoor paths between  and  . When interested in the effect in the entire

population, conditional exchangeability is required in all strata defined by ;

when interested in the effect in a subset of the population, conditional ex-

changeability is required in that subset only. Achieving conditional exchange-

ability may be an unrealistic goal in many observational studies but, as dis-

cussed in Section 3.2, expert knowledge can be used to get as close as possible

to that goal.

In addition, expert knowledge can be used to avoid adjusting for variables

that may introduce bias. At the very least, investigators should generally

avoid adjustment for variables affected by either the treatment or the outcome.

Of course, thoughtful and knowledgeable investigators could believe that two

or more causal structures, possibly leading to different conclusions regarding

confounding and confounders, are equally plausible. In that case they would

perform multiple analyses and explicitly state the assumptions about causal

structure required for the validity of each. Unfortunately, one can never be

certain that the set of causal structures under consideration includes the true

one; this uncertainty is unavoidable with observational data.

A final note. The existence of common causes of treatment and outcome,

and thus the definition of confounding, does not depend on the adjustment

method. We do not say that measured confounding exists simply because the

adjusted estimate is different from the unadjusted estimate. In fact, adjust-

ment for measured confounding will generally imply a change in the estimate,

but not necessarily the other way around. Changes in estimates may occur for

reasons other than confounding, including the introduction of selection bias
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Fine Point 7.4

The strength and direction of confounding bias. Suppose you conducted an observational study to identify the effect

of heart transplant  on death  and that you assumed no unmeasured confounding. A thoughtful critic says “the

inferences from this observational study may be incorrect because of potential confounding due to cigarette smoking

.” A crucial question is whether the bias results in an attenuated or an exaggerated estimate of the effect of heart

transplant. For example, suppose that the risk ratio from your study was 06 (heart transplant was estimated to reduce

mortality during the follow-up by 40%) and that, as the reviewer suspected, cigarette smoking  is a common cause

of  (cigarette smokers are less likely to receive a heart transplant) and  (cigarette smokers are more likely to die).

Because there are fewer cigarette smokers ( = 1) in the heart transplant group ( = 1) than in the other group

( = 0), one would have expected to find a lower mortality risk in the group  = 1 even under the null hypothesis of

no effect of treatment  on  . Adjustment for cigarette smoking will therefore move the effect estimate upwards (say,

from 06 to 07). In other words, lack of adjustment for cigarette smoking resulted in an exaggeration of the beneficial

average causal effect of heart transplant.

An approach to predict the direction of confounding bias is the use of signed causal diagrams. Consider the causal

diagram in Figure 7.1 with dichotomous , , and  variables. A positive sign over the arrow from  to  is added if

 has a positive average causal effect on  (i.e., if the probability of  = 1 is greater among those with  = 1 than

among those with  = 0), otherwise a negative sign is added if  has a negative average causal effect on  (i.e., if the

probability of  = 1 is greater among those with  = 0 than among those with  = 1). Similarly a positive or negative

sign is added over the arrow from  to  . If both arrows are positive or both arrows are negative, then the confounding

bias is said to be positive, which implies that effect estimate will be biased upwards in the absence of adjustment for

. If one arrow is positive and the other one is negative, then the confounding is said to be negative, which implies

that the effect estimate will be biased downwards in the absence of adjustment for . Unfortunately, this simple rule

may fail in more complex causal diagrams or when the variables are non dichotomous. See VanderWeele, Hernán, and

Robins (2008) for a more detailed discussion of signed diagrams in the context of average causal effects.

Regardless of the sign of confounding, another key issue is the magnitude of the bias. Biases that are not large

enough to affect the conclusions of the study may be safely ignored in practice, whether the bias is upwards or down-

wards. A large confounding bias requires a strong confounder-treatment association and a strong confounder-outcome

association (conditional on the treatment). For discrete confounders, the magnitude of the bias depends also on preva-

lence of the confounder (Cornfield et al. 1959, Walker 1991). If the confounders are unknown, one can only guess what

the magnitude of the bias is. Educated guesses can be organized by conducting sensitivity analyses (i.e., repeating the

analyses under several assumptions regarding the magnitude of the bias), which may help quantify the maximum bias

that is reasonably expected. See Greenland (1996a), Robins, Rotnitzky, and Scharfstein (1999), and Greenland and

Lash (2008) for detailed descriptions of sensitivity analyses for unmeasured confounding.

when adjusting for nonconfounders (see Chapter 8) and the use of noncollapsi-

ble effect measures (see Fine Point 4.3). Attempts to define confounding based

on change in estimates have been long abandoned because of these problems.

The next chapter presents another potential source of lack of exchangeabil-

ity between the treated and the untreated: selection of individuals into the

analysis.



Chapter 8
SELECTION BIAS

Suppose an investigator conducted a randomized experiment to answer the causal question “does one’s looking

up to the sky make other pedestrians look up too?” She found a strong association between her looking up and

other pedestrians’ looking up. Does this association reflect a causal effect? Well, by definition of randomized

experiment, confounding bias is not expected in this study. However, there was another potential problem: The

analysis included only those pedestrians that, after having been part of the experiment, gave consent for their data

to be used. Shy pedestrians (those less likely to look up anyway) and pedestrians in front of whom the investigator

looked up (who felt tricked) were less likely to participate. Thus participating individuals in front of whom the

investigator looked up (a reason to decline participation) are less likely to be shy (an additional reason to decline

participation) and therefore more likely to lookup. That is, the process of selection of individuals into the analysis

guarantees that one’s looking up is associated with other pedestrians’ looking up, regardless of whether one’s

looking up actually makes others looking up.

An association created as a result of the process by which individuals are selected into the analysis is referred to

as selection bias. Unlike confounding, this type of bias is not due to the presence of common causes of treatment and

outcome, and can arise in both randomized experiments and observational studies. Like confounding, selection

bias is just a form of lack of exchangeability between the treated and the untreated. This chapter provides a

definition of selection bias and reviews the methods to adjust for it.

8.1 The structure of selection bias

The term “selection bias” encompasses various biases that arise from the pro-

cedure by which individuals are selected into the analysis. The structure of

selection bias can be represented by using causal diagrams like the one in Figure

8.1, which depicts dichotomous treatment , outcome  , and their common
A Y C

Figure 8.1 effect . Suppose Figure 8.1 represents a study to estimate the effect of folic

acid supplements  given to pregnant women shortly after conception on the

fetus’s risk of developing a cardiac malformation  (1: yes, 0: no) during the

first two months of pregnancy. The variable  represents death before birth.

A cardiac malformation increases mortality (arrow from  to ), and folic

acid supplementation decreases mortality by reducing the risk of malforma-

tions other than cardiac ones (arrow from  to ). The study was restricted

to fetuses who survived until birth. That is, the study was conditioned on noSometimes the term “selection

bias” is used to refer to lack of

generalizability of measures of fre-

quency or effect. That is not the

meaning we attribute to the term

“selection bias” here. See Chapter

4 for a discussion of generalizabil-

ity. Pearl (1995) and Spirtes et al

(2000) used causal diagrams to de-

scribe the structure of bias resulting

from selection.

death  = 0 and hence the box around the node .

The diagram in Figure 8.1 shows two sources of association between treat-

ment and outcome: 1) the open path →  that represents the causal effect

of  on  , and 2) the open path  →  ←  that links  and  through

their (conditioned on) common effect . An analysis conditioned on  will

generally result in an association between  and  . We refer to this induced

association between the treatment  and the outcome  as selection bias due

to conditioning on . Because of selection bias, the associational risk ratio

Pr[ = 1| = 1  = 0]Pr[ = 1| = 0  = 0] does not equal the causal

risk ratio Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
; association is not causation. If the

analysis were not conditioned on the common effect (collider) , then the only
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open path between treatment and outcome would be  →  , and thus the

entire association between  and  would be due to the causal effect of  on

A CY S
Figure 8.2

 . That is, the associational risk ratio Pr[ = 1| = 1]Pr[ = 1| = 0]

would equal the causal risk ratio Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
; association

would be causation.

The causal diagram in Figure 8.2 shows another example of selection bias.

This diagram includes all variables in Figure 8.1 plus a node  representing

parental grief (1: yes, 0: no), which is affected by vital status at birth. Suppose

the study was restricted to non grieving parents  = 0 because the others were

unwilling to participate. As discussed in Chapter 6, conditioning on a variable

 affected by the collider  also opens the path →  ←  .

L CA Y

U
Figure 8.3

A CL Y

U
Figure 8.4

L CA Y

U

W

Figure 8.5

A CL Y

U

W

Figure 8.6

Both Figures 8.1 and 8.2 depict examples of selection bias in which the bias

arises because of conditioning on a common effect of treatment and outcome:

 in Figure 8.1 and  in Figure 8.2. However, selection bias can be defined

more generally as illustrated by Figures 8.3 to 8.6. Consider the causal diagram

in Figure 8.3, which represents a follow-up study of HIV-infected individuals

to estimate the effect of certain antiretroviral treatment  on the 3-year risk

of death  . The unmeasured variable  represents high level of immunosup-

pression (1: yes, 0: no). Patients with  = 1 have a greater risk of death.

If a patient drops out from the study or is otherwise lost to follow-up before

death or the end of the study, we say that he is censored ( = 1). Patients

with  = 1 are more likely to be censored because the severity of their disease

prevents them from participating in the study. The effect of  on censoring

 is mediated by the presence of symptoms (fever, weight loss, diarrhea, and

so on), CD4 count, and viral load in plasma, all included in , which could

or could not be measured. The role of , when measured, in data analysis is

discussed in Section 8.5; in this section, we take  to be unmeasured. Patients

receiving treatment are at a greater risk of experiencing side effects, which

could lead them to dropout, as represented by the arrow from  to . For

simplicity, assume that treatment  does not cause  and so there is no arrow

from  to  . The square around  indicates that the analysis is restricted to

those patients who remained uncensored ( = 0) because those are the only

patients in which  can be assessed.

According to the rules of d-separation, conditioning on the collider  opens

the path →  ← ←  →  and thus association flows from treatment 

to outcome  , i.e., the associational risk ratio is not equal to 1 even though

the causal risk ratio is equal to 1. Figure 8.3 can be viewed as a simple

transformation of Figure 8.1: the association between  and  resulting from

a direct effect of  on  in Figure 8.1 is now the result of  , a common

cause of  and . Some intuition for this bias: If a treated subject with

treatment-induced side effects (and thereby at a greater risk of dropping out)

did in fact not drop out ( = 0), then it is generally less likely that a second

independent cause of dropping out (e.g.,  = 1) was present. Therefore, an

inverse association between  and  would be expected in those who did not

dropped out ( = 0). Because  is positively associated with the outcome  ,

restricting the analysis to subjects who did not drop out of this study induces

an inverse association (mediated by ) between  and  .

The bias in Figure 8.3 is an example of selection bias that results from

conditioning on the censoring variable , which is a common effect of treat-

ment  and a cause  of the outcome  , rather than of the outcome itself.

We now present three additional causal diagrams that could lead to selection

bias by differential loss to follow up. In Figure 8.4 prior treatment  has a

direct effect on symptoms . Restricting the study to the uncensored individ-
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uals again implies conditioning on the common effect  of  and  , thereby

introducing an association between treatment and outcome. Figures 8.5 and

8.6 are variations of Figures 8.3 and 8.4, respectively, in which there is a com-Figures 8.5 and 8.6 show examples

of M-bias. mon cause  of  and another measured variable.  indicates unmeasured

lifestyle/personality/educational variables that determine both treatment (ar-

row from  to ) and either attitudes toward attending study visits (arrow

from  to  in Figure 8.5) or threshold for reporting symptoms (arrow from

 to  in Figure 8.6).More generally, selection bias can

be defined as the bias resulting from

conditioning on the common ef-

fect of two variables, one of which

is either the treatment or associ-

ated with the treatment, and the

other is either the outcome or asso-

ciated with the outcome (Hernán,

Hernández-Díaz, and Robins 2004).

We have described some different causal structures, depicted in Figures 8.1-

8.6, that may lead to selection bias. In all these cases, the bias is the result

of selection on a common effect of two other variables in the diagram, i.e., a

collider. We will use the term selection bias to refer to all biases that arise

from conditioning on a common effect of two variables, one of which is either

the treatment or a cause of treatment, and the other is either the outcome or

a cause of the outcome. We now describe some examples of selection bias that

share this structure.

8.2 Examples of selection bias

Consider the following examples of bias due to the mechanism by which indi-

viduals are selected into the analysis:

• Differential loss to follow-up: This is precisely the bias described in the
previous section and summarized in Figures 8.3-8.6. It is also referred to

as bias due to informative censoring.

• Missing data bias, nonresponse bias: The variable  in Figures 8.3-8.6

can represent missing data on the outcome for any reason, not just as a

result of loss to follow up. For example, individuals could have missing

data because they are reluctant to provide information or because they

miss study visits. Regardless of the reasons why data on  are missing,

restricting the analysis to subjects with complete data ( = 0) may

result in bias.

• Healthy worker bias : Figures 8.3—8.6 can also describe a bias that could
arise when estimating the effect of an occupational exposure  (e.g., a

chemical) on mortality  in a cohort of factory workers. The underlying

unmeasured true health status  is a determinant of both death  and

of being at work  (1: no, 0: yes). The study is restricted to individuals

who are at work ( = 0) at the time of outcome ascertainment. (

could be the result of blood tests and a physical examination.) Being

exposed to the chemical reduces the probability of being at work in the

near future, either directly (e.g., exposure can cause disabling asthma),

like in Figures 8.3 and 8.4, or through a common cause  (e.g., certain

exposed jobs are eliminated for economic reasons and the workers laid

off) like in Figures 8.5 and 8.6.

• Self-selection bias, volunteer bias: Figures 8.3-8.6 can also represent a
study in which  is agreement to participate (1: no, 0: yes),  is cigaretteBerkson (1955) described the struc-

ture of bias due to self-selection. smoking,  is coronary heart disease,  is family history of heart disease,

and  is healthy lifestyle. ( is any mediator between  and  such as

heart disease awareness.) Under any of these structures, selection bias
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Fine Point 8.1

Selection bias in case-control studies. Figure 8.1 can be used to represent selection bias in a case-control study.

Suppose certain investigator wants to estimate the effect of postmenopausal estrogen treatment  on coronary heart

disease  . The variable  indicates whether a woman in the study population (the underlying cohort, in epidemiologic

terms) is selected for the case-control study (1: no, 0: yes). The arrow from disease status  to selection  indicates

that cases in the population are more likely to be selected than noncases, which is the defining feature of a case-control

study. In this particular case-control study, the investigator decided to select controls ( = 0) preferentially among

women with a hip fracture. Because treatment  has a protective causal effect on hip fracture, the selection of controls

with hip fracture implies that treatment  now has a causal effect on selection . This effect of  on  is represented

by the arrow → . One could add an intermediate node  (representing hip fracture) between  and , but that is

unnecessary for our purposes.

In a case-control study, the association measure (the treatment-outcome odds ratio) is by definition conditional

on having been selected into the study ( = 0). If subjects with hip fracture are oversampled as controls, then the

probability of control selection depends on a consequence of treatment  (as represented by the path from  to )

and “inappropriate control selection” bias will occur. Again, this bias arises because we are conditioning on a common

effect  of treatment and outcome. A heuristic explanation of this bias follows. Among subjects selected for the study

( = 0), controls are more likely than cases to have had a hip fracture. Therefore, because estrogens lower the incidence

of hip fractures, a control is less likely to be on estrogens than a case, and hence the - odds ratio conditional on

 = 0 would be greater than the causal odds ratio in the population. Other forms of selection bias in case-control

studies, including some biases described by Berkson (1946) and incidence-prevalence bias, can also be represented by

Figure 8.1 or modifications of it, as discussed by Hernán, Hernández-Díaz, and Robins (2004).

may be present if the study is restricted to those who volunteered or

elected to participate ( = 0).

• Selection affected by treatment received before study entry : Suppose that
 in Figures 8.3-8.6 represents selection into the study (1: no, 0: yes)

and that treatment  took place before the study started. If treatmentRobins, Hernán, and Rotnitzky

(2007) used causal diagrams to de-

scribe the structure of bias due to

the effect of pre-study treatments

on selection into the study.

affects the probability of being selected into the study, then selection

bias is expected. The case of selection bias arising from the effect of

treatment on selection into the study can be viewed as a generalization

of self-selection bias. This bias may be present in any study that at-

tempts to estimate the causal effect of a treatment that occurred before

the study started or in which treatment includes a pre-study component.

For example, selection bias may arise when treatment is measured as the

lifetime exposure to certain factor (medical treatment, lifestyle behav-

ior...) in a study that recruited 50 year-old participants. In addition to

selection bias, it is also possible that there exists unmeasured confound-

ing for the pre-study component of treatment if confounders were only

measured during the study.

In addition to the biases described here, as well as in Fine Point 8.1 andFor example, selection bias may

be induced by certain attempts

to eliminate ascertainment bias

(Robins 2001) or to estimate direct

effects (Cole and Hernán 2002),

and by conventional adjustment for

variables affected by previous treat-

ment (see Part III).

Technical Point 8.1, causal diagrams have been used to characterize various

other biases that arise from conditioning on a common effect. These examples

show that selection bias may occur in retrospective studies–those in which data

on treatment  are collected after the outcome  occurs–and in prospective

studies–those in which data on treatment  are collected before the outcome

 occurs. Further, these examples show that selection bias may occur both in

observational studies and in randomized experiments.

For example, Figures 8.3 and 8.4 could depict either an observational study

or an experiment in which treatment  is randomly assigned, because there are
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no common causes of  and any other variable. Individuals in both randomized

experiments and observational studies may be lost to follow-up or drop out of

the study before their outcome is ascertained. When this happens, the risk

Pr[ = 1| = ] cannot be computed because the value of the outcome  is

unknown for the censored individuals ( = 1). Therefore only the risk among

the uncensored Pr[ = 1| =  = 0] can be computed. This restriction of

the analysis to the uncensored individuals may induce selection bias because

uncensored subjects who remained through the end of the study ( = 0) may

not be exchangeable with subjects that were lost ( = 1).

Hence a key difference between confounding and selection bias: random-

ization protects against confounding, but not against selection bias when the

selection occurs after the randomization. On the other hand, no bias arises

in randomized experiments from selection into the study before treatment is

assigned. For example, only volunteers who agree to participate are enrolled

in randomized clinical trials, but such trials are not affected by volunteer bias

because participants are randomly assigned to treatment only after agreeing to

participate ( = 0). Thus none of Figures 8.3-8.6 can represent volunteer bias

in a randomized trial. Figures 8.3 and 8.4 are eliminated because treatment

cannot cause agreement to participate . Figures 8.5 and 8.6 are eliminated

because, as a result of the random treatment assignment, there cannot exist a

common cause of treatment and any other variable.

8.3 Selection bias and confounding

C A Y

U

L

Figure 8.7

A Y1 Y2

U

Figure 8.8

A Y1 Y2

Figure 8.9

In this and the previous chapter, we describe two reasons why the treated and

the untreated may not be exchangeable: 1) the presence of common causes of

treatment and outcome, and 2) conditioning on common effects of treatment

and outcome (or causes of them). We refer to biases due to the presence of

common causes as “confounding” and to those due to conditioning on common

effects as “selection bias.” This structural definition provides a clear-cut clas-

sification of confounding and selection bias, even though it might not coincide

perfectly with the traditional, often discipline-specific, terminologies. For in-

stance, the same phenomenon is sometimes named “confounding by indication”

by epidemiologists and “selection bias” by statisticians and econometricians.

Others use the term “selection bias” when “confounders” are unmeasured.

Sometimes the distinction between confounding and selection bias is blurred

in the term “selection confounding.” Our goal, however, is not to be normative

about terminology, but rather to emphasize that, regardless of the particular

terms chosen, there are two distinct causal structures that lead to bias.

The end result of both structures is lack of exchangeability between the

treated and the untreated. For example, consider a study restricted to fire-

fighters that aims to estimate the causal effect of being physically active  on

the risk of heart disease  as represented in Figure 8.7. For simplicity, we

assume that, unknown to the investigators,  does not cause  . Parental so-

cioeconomic status  affects the risk of becoming a firefighter  and, through

childhood diet, of heart disease  . Attraction toward activities that involve

physical activity (an unmeasured variable ) affects the risk of becoming a

firefighter and of being physically active ().  does not affect  , and  does

not affect . According to our terminology, there is no confounding because

there are no common causes of  and  . Thus, the associational risk ratio

Pr [ = 1| = 1] Pr [ = 1| = 0] is expected to equal the causal risk ratio
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Technical Point 8.1

The built-in selection bias of hazard ratios. The causal DAG in Figure 8.8 describes a randomized experiment of the

effect of heart transplant  on death at times 1 (1) and 2 (2). The arrow from  to 1 represents that transplant

decreases the risk of death at time 1. The lack of an arrow from  to 2 indicates that  has no direct effect on death

at time 2. That is, heart transplant does not influence the survival status at time 2 of any subject who would survive

past time 1 when untreated (and thus when treated).  is an unmeasured haplotype that decreases the subject’s risk

of death at all times. Because of the absence of confounding, the associational risk ratios 1 =
Pr[1=1|=1]
Pr[1=1|=0] and

2 =
Pr[2=1|=1]
Pr[2=1|=0] are unbiased measures of the effect of  on death at times 1 and 2, respectively. Note that,

even though  has no direct effect on 2, 2 will be less than 1 because it is a measure of the effect of  on

total mortality through time 2.

Consider now the time-specific hazard ratio (which, for all practical purposes, is equivalent to the rate ratio). In

discrete time, the hazard of death at time 1 is the probability of dying at time 1 and thus the associational hazard ratio

is the same as 1 . However, the hazard at time 2 is the probability of dying at time 2 among those who survived

past time 1. Thus, the associational hazard ratio at time 2 is then 2|1=0 =
Pr[2=1|=11=0]
Pr[2=1|=01=0] . The square

around 1 in Figure 8.8 indicates this conditioning. Treated survivors of time 1 are less likely than untreated survivors of

time 1 to have the protective haplotype  (because treatment can explain their survival) and therefore are more likely

to die at time 2. That is, conditional on 1, treatment  is associated with a higher mortality at time 2. Thus, the

hazard ratio at time 1 is less than 1, whereas the hazard ratio at time 2 is greater than 1, i.e., the hazards have crossed.

We conclude that the hazard ratio at time 2 is a biased estimate of the direct effect of treatment on mortality at time

2. The bias is selection bias arising from conditioning on a common effect 1 of treatment  and of  , which is a cause

of 2 that opens the associational path  → 1 ←  → 2 between  and 2. In the survival analysis literature, an

unmeasured cause of death that is marginally unassociated with treatment such as  is often referred to as a frailty.

In contrast, the conditional hazard ratio 2|1=0 is 1 within each stratum of  because the path  →
1 ←  → 2 is now blocked by conditioning on the noncollider  . Thus, the conditional hazard ratio correctly

indicates the absence of a direct effect of  on 2. That the unconditional hazard ratio 2|1=0 differs from the

stratum-specific hazard ratios 2|1=0 , even though  is independent of , shows the noncollapsibility of the

hazard ratio (Greenland, 1996b). Unfortunately, the unbiased measure 2|1=0 of the direct effect of  on 2
cannot be computed because  is unobserved. In the absence of data on  , it is impossible to know whether  has a

direct effect on 2. That is, the data cannot determine whether the true causal DAG generating the data was that in

Figure 8.8 or in Figure 8.9. All of the above applies to both observational studies and randomized experiments.

Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
= 1. However, in a study restricted to fire-

fighters ( = 0), the associational and causal risk ratios would differ because

conditioning on a common effect  of causes of treatment and outcome induces

selection bias resulting in lack of exchangeability of the treated and untreated

firefighters. To the study investigators, the distinction between confounding

and selection bias is moot because, regardless of nomenclature, they must ad-

just for  to make the treated and the untreated firefighters comparable. This

example demonstrates that a structural classification of bias does not always

have consequences for the analysis of a study. Indeed, for this reason, many

epidemiologists use the term “confounder” for any variable  on which one has

to adjust for, regardless of whether the lack of exchangeability is the result of

conditioning on a common effect or the result of a common cause of treatment

and outcome.

There are, however, advantages of adopting a structural approach to the

classification of sources of non exchangeability. First, the structure of the

problem frequently guides the choice of analytical methods to reduce or avoid

the bias. For example, in longitudinal studies with time-varying treatments,

identifying the structure allows us to detect situations in which adjustment for
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confounding via stratification would introduce selection bias (see Part III). In

those cases, IP weighting or g-estimation are better alternatives. Second, even

when understanding the structure of bias does not have implications for data

analysis (like in the firefighters’ study), it could still help study design. For

example, investigators running a study restricted to firefighters should make

sure that they collect information on joint risk factors for the outcome  and

for the selection variable  (i.e., becoming a firefighter), as described in the

first example of confounding in Section 7.1. Third, selection bias resulting

from conditioning on pre-treatment variables (e.g., being a firefighter) couldSelection on pre-treatment factors

may introduce bias. Some au-

thors refer to this bias as “con-

founding”, rather than as “selection

bias”, even if no common causes

exist. This choice of terminol-

ogy usually has no practical con-

sequences: adjusting for  in Fig-

ure 7.4 creates bias, regardless of

its name. However, disregard for

the causal structure when there is

selection on post-treatment factors

may lead to apparent paradoxes

like the so-called Simpson’s paradox

(1951). See Hernán, Clayton, and

Keiding (2011) for details.

explain why certain variables behave as “confounders” in some studies but not

others. In our example, parental socioeconomic status  would not necessarily

need to be adjusted for in studies not restricted to firefighters. Finally, causal

diagrams enhance communication among investigators and may decrease the

occurrence of misunderstandings.

As an example of the last point, consider the “healthy worker bias”. We

described this bias in the previous section as an example of a bias that arises

from conditioning on the variable , which is a common effect of (a cause of)

treatment and (a cause of) the outcome. Thus the bias can be represented

by the causal diagrams in Figures 8.3-8.6. However, the term “healthy worker

bias” is also used to describe the bias that occurs when comparing the risk

in certain group of workers with that in a group of subjects from the general

population. This second bias can be depicted by the causal diagram in Figure

7.1 in which  represents health status,  represents membership in the group

of workers, and  represents the outcome of interest. There are arrows from

 to  and  because being healthy affects job type and risk of subsequent

outcome, respectively. In this case, the bias is caused by the common cause

 and we would refer to it as confounding. The use of causal diagrams to

represent the structure of the “healthy worker bias” prevents any confusions

that may arise from employing the same term for different sources of non

exchangeability.

8.4 Selection bias and identifiability of causal effects

Suppose an investigator conducted a marginally randomized experiment to

estimate the average causal effect of wasabi intake on the one-year risk of

death ( = 1). Half of the 60 study participants were randomly assigned to

eating meals supplemented with wasabi ( = 1) until the end of follow-up or

death, whichever occurred first. The other half were assigned to meals that

contained no wasabi ( = 0). After 1 year, 17 subjects died in each group.

That is, the associational risk ratio Pr [ = 1| = 1] Pr [ = 1| = 0] was 1.
Because of randomization, the causal risk ratio Pr

£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
is also expected to be 1. (If ignoring random variability bothers you, please

imagine the study had 60 million patients rather than 60.)

Unfortunately, the investigator could not observe the 17 deaths that oc-

curred in each group because many patients were lost to follow-up, or censored,

before the end of the study (i.e., death or one year after treatment assignment).

The proportion of censoring ( = 1) was higher among patients with heart dis-

ease ( = 1) at the start of the study and among those assigned to wasabi sup-

plementation ( = 1). In fact, only 9 individuals in the wasabi group and 22

individuals in the other group were not lost to follow-up. The investigator ob-

served 4 deaths in the wasabi group and 11 deaths in the other group. That is,
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the associational risk ratio Pr [ = 1| = 1  = 0] Pr [ = 1| = 0  = 0]
was (49)(1122) = 089 among the uncensored. The risk ratio of 089 in

the uncensored differs from the causal risk ratio of 1 in the entire population:

There is selection bias due to conditioning on the common effect .

The causal diagram in Figure 8.3 depicts the relation between the variables

, , , and  in the randomized trial of wasabi.  represents atherosclerosis,

an unmeasured variable, that affects both heart disease  and death  . Figure

8.3 shows that there are no common causes of  and  , as expected in a

marginally randomized experiment, and thus there is no need to adjust for

confounding to compute the causal effect of  on  . On the other hand,

Figure 8.3 shows that there is a common cause  of  and  . The presence

of this backdoor path  ←  ←  →  implies that, were the investigator

interested in estimating the causal effect of censoring  on  (which is null in

Figure 8.3), she would have to adjust for confounding due to the common cause

 . The backdoor criterion says that such adjustment is possible because the

measured variable  can be used to block the backdoor path  ← ←  →  .

The causal contrast we have considered so far is “the risk if everybody

had been treated”, Pr
£
 =1 = 1

¤
, versus “the risk if everybody had remained

untreated”, Pr
£
 =0 = 1

¤
, and this causal contrast does not involve  at all.

Why then are we talking about confounding for the causal effect of ? It turns

out that the causal contrast of interest needs to be modified in the presence

of censoring or, in general, of selection. Because selection bias would not exist

if everybody had been uncensored  = 0, we would like to consider a causal

contrast that reflects what would have happened in the absence of censoring.

Let  =1=0 be a subject’s counterfactual outcome if he had received treat-

ment  = 1 and he had remained uncensored  = 0. Similarly, let  =0=0

be a subject’s counterfactual outcome if he had not received treatment  = 0

and he had remained uncensored  = 0. Our causal contrast of interest is

now “the risk if everybody had been treated and had remained uncensored”,

Pr
£
 =1=0 = 1

¤
, versus “the risk if everybody had remained untreated and

uncensored”, Pr
£
 =0=0 = 1

¤
. This causal contrast does involve the censor-For example, we may want to com-

pute the causal risk ratio

E
£
 =1=0

¤
E

£
 =0=0

¤
or the causal risk difference

E
£
 =1=0

¤− E £ =0=0
¤
.

ing variable  and therefore considerations about confounding for  become

central. In fact, under this conceptualization of the causal contrast of interest,

we can think of censoring  as just another treatment. The goal of the analy-

sis is to compute the causal effect of a joint intervention on  and . Since

censoring  is now viewed as a treatment, we will need to ensure that the iden-

tifiability conditions of exchangeability, positivity, and consistency hold for 

as well as for .

Under these identifiability conditions, selection bias can be eliminated via

analytic adjustment and, in the absence of measurement error and confounding,

the causal effect of treatment  on outcome  can be identified. To eliminate

selection bias for the effect of treatment , we need to adjust for confounding

for the effect of treatment . The next section explains how to do so.

8.5 How to adjust for selection bias

Though selection bias can sometimes be avoided by an adequate design (see

Fine Point 8.1), it is often unavoidable. For example, loss to follow up, self-

selection, and, in general, missing data leading to bias can occur no matter how

careful the investigator. In those cases, the selection bias needs to be explicitly

corrected in the analysis. This correction can sometimes be accomplished by
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IP weighting (or by standardization), which is based on assigning a weight

 to each selected subject ( = 0) so that she accounts in the analysis not

only for herself, but also for those like her, i.e., with the same values of  and

, who were not selected ( = 1). The IP weight  is the inverse of the

probability of her selection Pr [ = 0|].

Figure 8.10

To describe the application of IP weighting for selection bias adjustment

consider again the wasabi randomized trial described in the previous section.

The tree graph in Figure 8.10 presents the trial data. Of the 60 individuals inWe have described IP weights to

adjust for confounding,  =

1 (|), and selection bias.

 = 1Pr[ = 0|]. When
both confounding and selection bias

exist, the product weight 

can be used to adjust simultane-

ously for both biases under assump-

tions described in Chapter 12 and

Part III.

the trial, 40 had ( = 1) and 20 did not have ( = 0) heart disease at the time

of randomization. Regardless of their  status, all individuals had a 5050

chance of being assigned to wasabi supplementation ( = 1). Thus 10 individ-

uals in the  = 0 group and 20 in the  = 1 group received treatment  = 1.

This lack of effect of  on  is represented by the lack of an arrow from  to 

in the causal diagram of Figure 8.3. The probability of remaining uncensored

varies across branches in the tree. For example, 50% of the individuals without

heart disease that were assigned to wasabi ( = 0,  = 1), whereas 60% of

the individuals with heart disease that were assigned to no wasabi ( = 1,

 = 0), remained uncensored. This effect of  and  on  is represented
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by arrows from  and  into  in the causal diagram of Figure 8.3. Finally,

the tree shows how many people would have died ( = 1) both among the

uncensored and the censored individuals. Of course, in real life, investigators

would never know how many deaths occurred among the censored individuals.

It is precisely the lack of this knowledge which forces investigators to restrict

the analysis to the uncensored, opening the door for selection bias. Here we

show the deaths in the censored to document that, as depicted in Figure 8.3,

treatment  is marginally independent on  , and censoring  is independent

of  within levels of . It can also be checked that the risk ratio in the entire

population (inaccessible to the investigator) is 1 whereas the risk ratio in the

uncensored (accessible to the investigator) is 089.

Figure 8.11

Let us now describe the intuition behind the use of IP weighting to adjust

for selection bias. Look at the bottom of the tree in Figure 8.10. There

are 20 individuals with heart disease ( = 1) who were assigned to wasabi

supplementation ( = 1). Of these, 4 remained uncensored and 16 were lost

to follow-up. That is, the conditional probability of remaining uncensored in

this group is 15, i.e., Pr[ = 0| = 1  = 1] = 420 = 02. In an IP

weighted analysis the 16 censored individuals receive a zero weight (i.e., they
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do not contribute to the analysis), whereas the 4 uncensored individuals receive

a weight of 5, which is the inverse of their probability of being uncensored

(15). IP weighting replaces the 20 original subjects by 5 copies of each of

the 4 uncensored subjects. The same procedure can be repeated for the other

branches of the tree, as shown in Figure 8.11, to construct a pseudo-population

of the same size as the original study population but in which nobody is lost to

follow-up. (We let the reader derive the IP weights for each branch of the tree.)

The associational risk ratio in the pseudo-population is 1, the same as the risk

ratio Pr
£
 =1=0 = 1

¤
Pr

£
 =0=0 = 1

¤
that would have been computed in

the original population if nobody had been censored.

The association measure in the pseudo-population equals the effect measure

in the original population if the following three identifiability conditions are

met.In many applications, it is reason-

able to assume that censoring does

not have a causal effect on the out-

come (an exception would be a set-

ting in which being lost to follow-

up prevents people from getting ad-

ditional treatment). One might

then imagine that the definition of

causal effect could ignore censor-

ing, i.e., we could omit the super-

script  = 0. However, omitting

the superscript would obscure the

fact that estimating the effect of

treatment  in the presence of se-

lection bias due to  requires 1)

the same assumptions for censoring

 as for treatment , and 2) sta-

tistical methods that are identical

to those you would have to use if

you wanted to estimate the effect

of censoring .

First, the average outcome in the uncensored subjects must equal the

unobserved average outcome in the censored subjects with the same values

of  and . This provision will be satisfied if the probability of selection

Pr[ = 0| = 1  = 1] is calculated conditional on treatment  and on all

additional factors that independently predict both selection and the outcome,

that is, if the variables in  and  are sufficient to block all backdoor paths

between  and  . Unfortunately, one can never be sure that these additional

factors were identified and recorded in , and thus the causal interpretation

of the resulting adjustment for selection bias depends on this untestable ex-

changeability assumption.

Second, IP weighting requires that all conditional probabilities of being

uncensored given the variables in  must be greater than zero. Note this

positivity condition is required for the probability of being uncensored ( = 0)

but not for the probability of being censored ( = 1) because we are not

interested in inferring what would have happened if study subjects had been

censored, and thus there is no point in constructing a pseudo-population in

which everybody is censored. For example, the tree in Figure 8.10 shows that

Pr[ = 1| = 0  = 0] = 0, but this zero does not affect our ability to

construct a pseudo-population in which nobody is censored.

The third condition is consistency, including well-defined interventions. IP

weighting is used to create a pseudo-population in which censoring  has been

abolished, and in which the effect of the treatment  is the same as in the

original population. Thus, the pseudo-population effect measure is equal to

the effect measure had nobody been censored. This effect measure may be

relatively well defined when censoring is the result of loss to follow up or

nonresponse, but not when censoring is the result of competing events. ForA competing event is an event that

prevents the outcome of interest

from happening. A typical exam-

ple of competing event is death be-

cause, once an individual dies, no

other outcomes can occur.

example, in a study aimed at estimating the effect of certain treatment on the

risk of Alzheimer’s disease, we might not wish to base our effect estimates on

a pseudo-population in which all other causes of death (cancer, heart disease,

stroke, and so on) have been removed, because it is unclear even conceptually

what sort of medical intervention would produce such a population. A more

pragmatic reason is that no feasible intervention could possibly remove just

one cause of death without affecting the others as well.

Finally, one could argue that IP weighting is not necessary to adjust for

selection bias in a setting like that described in Figure 8.3. Rather, one might

attempt to remove selection bias by stratification (i.e., by estimating the effect

measure conditional on the  variables) rather than by IP weighting. Strat-

ification could yield unbiased conditional effect measures within levels of 

because conditioning on  is sufficient to block the backdoor path from  to

 . That is, the conditional risk ratio
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Pr [ = 1| = 1  = 0  = ] Pr [ = 1 = 0  = 0  = ]

can be interpreted as the effect of treatment among the uncensored with  = .

A Y

E

Figure 8.12

A Y

E

YA

YE

YO

Figure 8.13

For the same reason stratification would work (i.e., it would provide an unbi-

ased conditional effect measure) under the causal structure depicted in Figure

8.5. Stratification, however, would not work under the structure depicted in

Figures 8.4 and 8.6. Take Figure 8.4. Conditioning on  blocks the backdoor

path from  to  but also opens the path  →  ←  →  from  to 

because  is a collider on that path. Thus, even if the causal effect of  on 

is null, the conditional (on ) risk ratio would be generally different from 1.

And similarly for Figure 8.6. In contrast, IP weighting appropriately adjusts

for selection bias under Figures 8.3-8.6 because this approach is not based on

estimating effect measures conditional on the covariates , but rather on esti-

mating unconditional effect measures after reweighting the subjects according

to their treatment and their values of . This is the first time we discuss a

situation in which stratification cannot be used to validly compute the causal

effect of treatment, even if the three conditions of exchangeability, positivity,

and consistency hold. We will discuss other situations with a similar struc-

ture in Part III when estimating direct effects and the effect of time-varying

treatments.

8.6 Selection without bias

The causal diagram in Figure 8.12 represents a hypothetical study with di-
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Figure 8.14
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YO

V

Figure 8.15

chotomous variables surgery , certain genetic haplotype , and death  .

According to the rules of d-separation, surgery  and haplotype  are (i) mar-

ginally independent, i.e., the probability of receiving surgery is the same for

people with and without the genetic haplotype, and (ii) associated condition-

ally on  , i.e., the probability of receiving surgery varies by haplotype when

the study is restricted to, say, the survivors ( = 0).

Indeed conditioning on the common effect  of two independent causes 

and  always induces a conditional association between  and  in at least

one of the strata of  (say,  = 1). However, there is a special situation under

which  and  remain conditionally independent within the other stratum

(say,  = 0).

Suppose  and  affect survival through totally independent mechanisms

in such a way that  cannot possibly modify the effect of  on  , and vice

versa. For example, suppose that the surgery  affects survival through the

removal of a tumor, whereas the haplotype  affects survival through increasing

levels of low-density lipoprotein-cholesterol levels resulting in an increased risk

of heart attack (whether or not a tumor is present). In this scenario, we can

consider 3 cause-specific mortality variables: death from tumor , death from

heart attack , and death from any other causes . The observed mortality

variable  is equal to 1 (death) when  or  or  is equal to 1, and  is

equal to 0 (survival) when  and  and  equal 0. The causal diagram in

Figure 8.13, an expansion of that in Figure 8.12, represents a causal structure

linking all these variables. We assume data on underlying cause of death (,

, ) are not recorded and thus the only measured variables are those in

Figure 8.12 (, ,  ).
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Technical Point 8.2

Multiplicative survival model. When the conditional probability of survival Pr [ = 0| =  = ] given  and  is

equal to a product ()() of functions of  and , we say that a multiplicative survival model holds. A multiplicative

survival model

Pr [ = 0| =  = ] = ()()

is equivalent to a model that assumes the survival ratio Pr [ = 0| =  = ] Pr [ = 0| =  = 0] does not

depend on  and is equal to (). The data follow a multiplicative survival model when there is no interaction between

 and  on the multiplicative scale as depicted in Figure 8.13. Note that if Pr [ = 0| =  = ] = ()(), then

Pr [ = 1| =  = ] = 1 − ()() does not follow a multiplicative mortality model. Hence, when  and  are

conditionally independent given  = 0, they will be conditionally dependent given  = 1.

Because the arrows from ,  and  to  are deterministic, condition-

ing on observed survival ( = 0) is equivalent to simultaneously conditioning

A Y

E

YA

YE

YO

W1

W2

Figure 8.16

on  = 0,  = 0, and  = 0 as well, i.e., conditioning on  = 0 implies

 =  =  = 0. As a consequence, we find by applying d-separation

to Figure 8.13 that  and  are conditionally independent given  = 0,

i.e., the path, between  and  through the conditioned on collider  is

blocked by conditioning on the noncolliders ,  and . On the other

hand, conditioning on death  = 1 does not imply conditioning on any spe-

cific values of ,  and  as the event  = 1 is compatible with 7 pos-

sible unmeasured events: ( = 1  = 0  = 0), ( = 0  = 1  = 0),

( = 0  = 0  = 1), ( = 1  = 1  = 0), ( = 0  = 1  = 1),

( = 1  = 0  = 1), and ( = 1  = 1  = 1). Thus, the path be-

tween  and  through the conditioned on collider  is not blocked:  and

 are associated given  = 1.

In contrast with the situation represented in Figure 8.13, the variables

 and  will not be independent conditionally on  = 0 when one of the

situations represented in Figures 8.14-8.16 occur. If  and  affect survival

through a common mechanism, then there will exist an arrow either from 

to  or from  to , as shown in Figure 8.14. In that case, and  and 

will be dependent within both strata of  . Similarly, if  and  are not

independent because of a common cause  as shown in Figure 8.15,  and 

will be dependent within both strata of  . Finally, if the causes  and ,

and  and , are not independent because of common causes1 and 2 as

shown in Figure 8.16, then  and  will also be dependent within both strata

of  . When the data can be summarized by Figure 8.12, we say that the data

follow a multiplicative survival model (see Technical Point 8.2).

What is interesting about Figure 8.13 is that by adding the unmeasured

variables ,  and , which functionally determine the observed variable

 , we have created an augmented causal diagram that succeeds in representingAugmented causal DAGs, intro-

duced by Hernán, Hernández-Díaz,

and Robins (2004), can be ex-

tended to represent the sufficient

causes described in Chapter 5 (Van-

derWeele and Robins, 2007c).

both the conditional independence between  and  given  = 0 and the their

conditional dependence given  = 1.

In summary, conditioning on a collider always induces an association be-

tween its causes, but this association could be restricted to certain levels of the

common effect. In other words, it is theoretically possible that selection on a

common effect does not result in selection bias when the analysis is restricted

to a single level of the common effect.
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Fine Point 8.2

The strength and direction of selection bias. We have referred to selection bias as an “all or nothing” issue: either

bias exists or it doesn’t. In practice, however, it is important to consider the expected direction and magnitude of the

bias.

The direction of the conditional association between 2 marginally independent causes  and  within strata of

their common effect  depends on how the two causes  and  interact to cause  . For example, suppose that, in

the presence of an undiscovered background factor  that is unassociated with  or , having either  = 1 or  = 1

is sufficient and necessary to cause death (an “or” mechanism), but that neither  nor  causes death in the absence

of  . Then among those who died ( = 1),  and  will be negatively associated, because it is more likely that an

individual with  = 0 had  = 1 because the absence of  increases the chance that  was the cause of death. (Indeed,

the logarithm of the conditional odds ratio |=1 will approach minus infinity as the population prevalence of 
approaches 1.0.) This “or” mechanism was the only explanation given in the main text for the conditional association

of independent causes within strata of a common effect; nonetheless, other possibilities exist.

For example, suppose that in the presence of the undiscovered background factor  , having both  = 1 and  = 1

is sufficient and necessary to cause death (an “and” mechanism) and that neither  nor  causes death in the absence

of  . Then, among those who die, those with  = 1 are more likely to have  = 1, i.e.,  and  are positively

correlated. A standard DAG such as that in Figure 8.12 fails to distinguish between the case of  and  interacting

through an “or” mechanism from the case of an “and” mechanism. Causal DAGs with sufficient causation structures

(VanderWeele and Robins, 2007c) overcome this shortcoming.

Regardless of the direction of selection bias, another key issue is its magnitude. Biases that are not large enough

to affect the conclusions of the study may be safely ignored in practice, whether the bias is upwards or downwards.

Generally speaking, a large selection bias requires strong associations between the collider and both treatment and

outcome. Greenland (2003) studied the magnitude of selection bias, which he referred to as collider-stratification bias,

under several scenarios.



Chapter 9
MEASUREMENT BIAS

Suppose an investigator conducted a randomized experiment to answer the causal question “does one’s looking

up to the sky make other pedestrians look up too?” She found a weak association between her looking up and

other pedestrians’ looking up. Does this weak association reflect a weak causal effect? By definition of randomized

experiment, confounding bias is not expected in this study. In addition, no selection bias was expected because

all pedestrians’ responses–whether they did or did not look up–were recorded. However, there was another

problem: the investigator’s collaborator who was in charge of recording the pedestrians’ responses made many

mistakes. Specifically, the collaborator missed half of the instances in which a pedestrian looked up and recorded

these responses as “did not look up.” Thus, even if the treatment (the investigator’s looking up) truly had a strong

effect on the outcome (other people’s looking up), the misclassification of the outcome will result in a dilution of

the association between treatment and the (mismeasured) outcome.

We say that there is measurement bias when the association between treatment and outcome is weakened

or strengthened as a result of the process by which the study data are measured. Since measurement errors can

occur under any study design–including randomized experiments and observational studies–measurement bias

need always be considered when interpreting effect estimates. This chapter provides a description of biases due to

measurement error.

9.1 Measurement error

In previous chapters we made the implicit assumption that all variables were

perfectly measured. This assumption is generally unrealistic. For example,

YA

A*
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Figure 9.1

consider an observational study designed to estimate the effect of a cholesterol-

lowering drug  on the risk of liver disease  in which the information on

drug use is obtained by medical record abstraction. We expect that treatment

 will be measured imperfectly: the abstractor may make a mistake when

transcribing the data, the physician may forget to write down that the patient

was prescribed the drug, the patient may not take the prescribed treatment...

Thus, the treatment variable in our analysis data set will not be the true use

of the drug, but rather the measured use of the drug. We will refer to the

measured treatment as ∗ (read A-star), which will not necessarily equal the
true treatment  for a given individual.

The causal diagram in Figure 9.1 depicts the variables , ∗, and  . For

simplicity, we chose a diagram that represents no confounding or selection bias

for the causal effect of  on  . The true treatment  affects both the out-

come  and the measured treatment ∗. The causal diagram also includes

the node  to represent all factors other than  that determine the value

of ∗. We refer to  as the measurement error for . Note that the nodeThe term “misclassification” is syn-

onymous for “measurement error”

for discrete variables

 is unnecessary in discussions of confounding (it is not part of a back-

door path) or selection bias (no variables are conditioned on) and therefore

we omitted it from the causal diagrams in Chapters 7 and 8. For the same

reasons, the determinants of the variables  and  are not included in Figure

9.1. The psychological literature sometimes refers to  as the “construct” and

to ∗ as the “measure” or “indicator.” The challenge in observational disci-
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plines is making inferences about the unobserved construct (e.g., intelligence,

cholesterol-lowering drug use) by using data on the observed measure (e.g.,
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Figure 9.2
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Figure 9.3

intelligence quotient estimated from questionnaire responses; information on

statin use from medical records).

Besides treatment , the outcome  can be measured with error too. The

causal diagram in Figure 9.2 includes the measured outcome  ∗, and the mea-
surement error  for  . Figure 9.2 illustrates a common situation in practice.

One wants to compute the average causal effect of the treatment  on the out-

come  , but these variables have not been, or cannot be, measured correctly.

Rather, only the mismeasured versions ∗ and  ∗ are available to the investi-
gator who aims at identifying the causal effect of  on  .

Figure 9.2 represents a setting in which there is neither confounding nor se-

lection bias for the causal effect of treatment on outcome  . According to our

reasoning in previous chapters, association is causation in this setting. We can

compute any association measure and endow it with a causal interpretation.

For example, the associational risk ratio Pr [ = 1| = 1] Pr [ = 1| = 0]
is equal to the causal risk ratio Pr

£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
. Our implicit

assumption in previous chapters, which we now make explicit, was that per-

fectly measured data on  and  were available. We now consider the more

realistic setting in which treatment or outcome are measured with error. Then

there is no guarantee that the measure of association between ∗ and  ∗ will
equal the measure of causal effect of  on  . The associational risk ratio

Pr [ ∗ = 1|∗ = 1] Pr [ ∗ = 1|∗ = 0] will generally differ from the causal

risk ratio Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
. We say that there is measurement

bias or information bias. In the presence of measurement bias, the identifia-

bility conditions of exchangeability, positivity, and consistency are insufficient

to compute the causal effect of treatment  on outcome  .

9.2 The structure of measurement error

The causal structure of confounding can be summarized as the presence of

common causes of treatment and outcome, and the causal structure of selec-

tion bias can be summarized as conditioning on common effects of treatment

and outcome (or of their causes). Measurement bias arises in the presence of

measurement error, but there is no single structure to summarize measurement

error. This section classifies the structure of measurement error according to
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Figure 9.4

two properties: independence and nondifferentiality.

The causal diagram in Figure 9.2 depicts the measurement errors  and

 for both treatment  and outcome  , respectively. According to the rules

of d-separation, the measurement errors  and  are independent because

the path between them is blocked by colliders (either ∗ or  ∗). Independent
errors will arise if, for example, information on both drug use  and liver

toxicity  was obtained from electronic medical records in which data entry

errors occurred haphazardly. In other settings, however, the measurement

errors for exposure and outcome may be dependent, as depicted in Figure 9.3.

For example, dependent measurement errors will occur if the information on

both  and  were obtained retrospectively by phone interview and a subject’s

ability to recall her medical history ( ) affected the measurement of both

 and  .

Both Figures 9.2 and 9.3 represent settings in which the error for treatment

 is independent of the true value of the outcome  , and the error for the



Measurement bias 111

outcome  is independent of the true value of treatment. We then say that the
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measurement error for treatment is nondifferential with respect to the outcome,

and that the measurement error for the outcome is nondifferential with respect

to the treatment. The causal diagram in Figure 9.4 shows an example of

independent but differential measurement error in which the true value of the

outcome affects the measurement of the treatment (i.e., an arrow from  to

). Some examples of differential measurement error of the treatment follow.

Suppose that the outcome  were dementia rather than liver toxicity, and

that drug use  were ascertained by interviewing study participants. Since

the presence of dementia affects the ability to recall , one would expect an

arrow from  to . Similarly, one would expect an arrow from  to  in a

study to compute the effect of alcohol use during pregnancy  on birth defects

 if alcohol intake is ascertained by recall after delivery–because recall may

be affected by the outcome of the pregnancy. The resulting measurement bias

in these two examples is often referred to as recall bias. A bias with the same

structure might arise if blood levels of drug ∗ are used in place of actual drug
use , and blood levels are measured after liver toxicity  is present–because

liver toxicity affects the measured blood levels of the drug. The resulting

measurement bias is often referred to as reverse causation bias.

The causal diagram in Figure 9.5 shows an example of independent but

differential measurement error in which the true value of the treatment affects

the measurement of the outcome (i.e., an arrow from  to  ). A differential

measurement error of the outcome will occur if physicians, suspecting that drug

use  causes liver toxicity  , monitored patients receiving drug more closely

than other patients. Figures 9.6 and 9.7 depict measurement errors that are

both dependent and differential, which may result from a combination of the

settings described above.

In summary, we have discussed four types of measurement error: indepen-

dent nondifferential (Figure 9.2), dependent nondifferential (Figure 9.3), inde-

pendent differential (Figures 9.4 and 9.5), and dependent differential (Figures

9.6 and 9.7). The particular structure of the measurement error determines

the methods that can be used to correct for it. For example, there is a large

literature on methods for measurement error correction when the measurement

error is independent nondifferential. In general, methods for measurement er-

ror correction rely on a combination of modeling assumptions and validation

samples, i.e., subsets of the data in which key variables are measured with

little or no error. The description of methods to measurement error correc-

tion is beyond the scope of this book. Rather, our goal is to highlight that

the act of measuring variables (like that of selecting subjects) may introduce

bias. Realistic causal diagrams of observational studies need to simultaneously

represent biases arising from confounding, selection, and measurement. The

best method to fight bias due to mismeasurement is, obviously, to improve the

measurement procedures.

9.3 Mismeasured confounders

Besides the treatment  and the outcome  , the confounders  may also be

measured with error. Mismeasurement of confounders will result in measure-

ment bias even if both treatment and outcome are perfectly measured. To

see this, consider the causal diagram in Figure 9.8, which includes the vari-

ables drug use , liver disease  , and history of hepatitis . Individuals with
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Technical Point 9.1

Independence and nondifferentiality. Let (·) denote a probability density function (pdf). The measurement errors
 for treatment and  for outcome are independent if their joint pdf equals the product of their marginal pdfs, i.e.,
(  ) = ( )(). The measurement error  for the treatment is nondifferential if its pdf is independent of
the outcome  , i.e., (| ) = (). Analogously, the measurement error  for the outcome is nondifferential if

its pdf is independent of the treatment , i.e., ( |) = ( ).

prior hepatitis  are less likely to be prescribed drug  and more likely to
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Figure 9.8

develop liver disease  . As discussed in Chapter 7, there is confounding for

the effect of the treatment  on the outcome  because there exists a back-

door path  ←  →  , but there is no unmeasured confounding given 

because the backdoor path  ←  →  can be blocked by conditioning on

. That is, there is exchangeability of the treated and the untreated condi-

tional on the confounder , and one can apply IP weighting or standardization

to compute the average causal effect of  on  . The standardized, or IP

weighted, risk ratio based on ,  , and  will equal the causal risk ratio

Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
.

Again the implicit assumption in the above reasoning is that the confounder

 was perfectly measured. Suppose investigators did not have access to the

study participants’ medical records. Rather, to ascertain previous diagnoses of

hepatitis, investigators had to ask participants via a questionnaire. Since not all

participants provided an accurate recollection of their medical history–some

did not want anyone to know about it, others had memory problems or simply

made a mistake when responding to the questionnaire–the confounder  was

measured with error. Investigators had data on the mismeasured variable ∗

rather than on the variable . Unfortunately, the backdoor path ← → 

cannot be generally blocked by conditioning on ∗. The standardized (or

IP weighted) risk ratio based on ∗,  , and  will generally differ from the

causal risk ratio Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
. We then say that there is

measurement bias or information bias.
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The causal diagram in Figure 9.9 shows an example of confounding of the

causal effect of  on  in which  is not the common cause shared by  and

 . Here too mismeasurement of  leads to measurement bias because the

backdoor path ← ←  →  cannot be generally blocked by conditioning

on ∗. (Note that Figures 9.8 and 9.9 do not include the measurement error 
because the particular structure of this error is not relevant to our discussion.)

Alternatively, one could view the bias due to mismeasured confounders in

Figures 9.8 and 9.9 as a form of unmeasured confounding rather than as a form

of measurement bias. In fact the causal diagram in Figure 9.8 is equivalent

to that in Figure 7.5. One can think of  as an unmeasured variable and of

∗ as a surrogate confounder (see Fine Point 7.1). The particular choice of
terminology–unmeasured confounding versus bias due to mismeasurement of

the confounders–is irrelevant for practical purposes.

Mismeasurement of confounders may also result in apparent effect modi-

fication. As an example, suppose that all study participants who reported a

prior diagnosis of hepatitis (∗ = 1) and half of those who reported no prior
diagnosis of hepatitis (∗ = 0) did actually have a prior diagnosis of hepatitis
( = 1). That is, the true and the measured value of the confounder coin-

cide in the stratum ∗ = 1, but not in the stratum ∗ = 0. Suppose further
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Fine Point 9.1

The strength and direction of measurement bias. In general, measurement error will result in bias. A notable

exception is the setting in which  and  are unassociated and the measurement error is independent and nondifferential:

If the arrow from  to  did not exist in Figure 9.2, then both the - association and the ∗- ∗ association would
be null. In all other circumstances, measurement bias may result in an ∗- ∗ association that is either further from
or closer to the null than the - association. Worse, for non-dichotomous treatments, measurement bias may result

in ∗- ∗ and - associations in opposite directions. This association or trend reversal may occur even under the

independent and nondifferential measurement error structure of Figure 9.2 when the mean of ∗ is a nonmonotonic
function of . See Dosemeci, Wacholder, and Lubin (1990) and Weinberg, Umbach, and Greenland (1994) for details.

VanderWeele and Hernán (2009) described a more general framework using signed causal diagrams.

The magnitude of the measurement bias depends on the magnitude of the measurement error. That is, measurement

bias generally increases with the strength of the arrows from  to 
∗ and from  to 

∗. Causal diagrams do not
encode quantitative information, and therefore they cannot be used to describe the magnitude of the bias.

that treatment  has no effect on any subject’s liver disease  , i.e., the sharp

null hypothesis holds. When investigators restrict the analysis to the stratum

∗ = 1, there will be no confounding by  because all participants included in
the analysis have the same value of  (i.e.,  = 1). Therefore they will find no

association between  and  in the stratum ∗ = 1. However, when the inves-
tigators restrict the analysis to the stratum ∗ = 0, there will be confounding
by  because the stratum ∗ = 0 includes a mixture of individuals with both
 = 1 and  = 0. Thus the investigators will find an association between 

and  as a consequence of uncontrolled confounding by . If the investigators

are unaware of the fact that there is mismeasurement of the confounder in the

stratum ∗ = 0 but not in the stratum ∗ = 1, they could naively conclude

that both the association measure in the stratum ∗ = 0 and the association
measure in the stratum ∗ = 1 can be interpreted as effect measures. Because

A CY C*

Figure 9.10

these two association measures are different, the investigators will say that ∗

is a modifier of the effect of  on  even though no true effect modification

exists.

Finally, it is also possible that a collider  is measured with error as repre-

sented in Figure 9.10. In this setting, conditioning on the mismeasured collider

∗ will still introduce selection bias because ∗ is a common effect of the treat-
ment  and the outcome  .

9.4 Adherence to treatment in randomized experiments

Consider a marginally randomized experiment to compute the causal effect of

heart transplant on 5-year mortality  . So far in this book we have used the

notation  = 1 to refer to the study participants who were assigned and there-

fore received the treatment of interest (heart transplant in this example), and

 = 0 to the others. This choice of notation was appropriate for ideal ran-

domized experiments in which all participants assigned to treatment actually

received treatment, and in which all participants assigned to no treatment ac-

tually did not receive treatment. This notation, however is not detailed enough

for real randomized experiments in which participants may not comply with

the assigned treatment. In real randomized experiments we need to distinguish
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between two versions of treatment: the assigned treatment  and the received

treatment . Let  indicate, as usual, the treatment received (1 if the person

receives a transplant, 0 otherwise). Let  indicate treatment assigned (1 if the

person is assigned to transplant, 0 otherwise). For a given individual, the value

of  and  may differ. For example, a subject randomly assigned to receive

a heart transplant ( = 1) may not receive it ( = 0) because he refuses to

undergo the surgical procedure, or a subject assigned to medical treatment

only ( = 0) may still obtain a transplant ( = 1) outside of the study. The

assigned treatment  is a misclassified version of the treatment  that was

truly received by the study participants. Noncompliance or lack of adherence

with the assigned treatment is a special case of treatment misclassification that

occurs in randomized experiments.

But there is a key difference between the assigned treatment  and the

misclassified treatments ∗ that we have considered so far. The mismeasured
treatment ∗ considered in Figures 9.1-9.7 does not have a causal effect on the
outcome  . The association between ∗ and  is entirely due to their common
cause . In observational studies, one generally expects no causal effect of the

measured treatment ∗ on the outcome, even if the true treatment  has

a causal effect. However, this is not the case for the special mismeasured

treatment  in randomized experiments (and that is why we elected to use

the notation  rather than ∗ to refer to it). As shown in Figure 9.11, the
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assigned treatment  may have a causal effect on the outcome  through two

different pathways. (Next section discusses the variable  in Figure 9.11.)

First, treatment assignment  may affect the outcome  through the effect

of assigned treatment on received treatment . Individuals assigned to heart

transplant are more likely to receive a heart transplant, as represented by

the arrow from  to . If receiving a heart transplant has a causal effect

on mortality, as represented by the arrow from  to  , then we conclude

that assigned treatment  has a causal effect on the outcome  through the

pathway  → →  .

Second, treatment assignment  may affect the outcome  through path-

ways that are not mediated by received treatment . That is, awareness of the

assigned treatment might lead to changes in the study participants’ behavior.

For example, suppose those who are aware of receiving a transplant tend to

spontaneously change their diet in an attempt to keep their new heart healthy,

or that doctors take special care of patients who were not assigned to a heart

transplant. These behavioral changes are represented by the direct arrow from

 to  .

Thus the causal effect of the assigned treatment  on  combines the

effect of  via received treatment  and the concurrent behavioral changes.

But suppose for a moment that the investigators were only interested in the

causal effect of  on  that is mediated by , uncontaminated by changes in

behavior or care. Then investigators would withhold knowledge of the assigned

treatment  from participants and their doctors. For example, if  were aspirin

the investigators would administer an aspirin pill to those randomly assigned

to  = 1, and an identical pill (except that it does not contain aspirin but only

some inert substance) to those assigned to  = 0. A pill that looks like the

active treatment but contains no active treatment is a placebo. Because neither

a participant nor her doctor know whether the pill is the active treatment or

a placebo, we would say that both participants and doctors are “blinded” and

that the study is a double-blind placebo-controlled randomized experiment. The

goal of this design is to ensure that the whole effect, if any, of the treatment

assignment  is solely due to the received treatment . When placebo has
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Technical Point 9.2

The exclusion restriction. Let   be the counterfactual outcome under randomized treatment assignment  and

actual treatment received . We say that the exclusion restriction holds when  =0 =  =1 for all subjects and all

values  and, specifically, for the value  observed for each subject.

no effect, there is no direct arrow from  to  (Figure 9.12) and we say that
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the exclusion restriction holds. A blind treatment assignment, however, is

sometimes unfeasible. For example, in our heart transplant study, there is no

practical way of administering a convincing placebo for open heart surgery

and lifelong immunosuppressive therapy. Other studies cannot be effectively

blinded because the well known side effects of a treatment make apparent who

is taking it.

Since there is no confounding, selection bias or measurement bias for 

in Figures 9.11 and 9.12, the association between  and  can be appropri-

ately interpreted as the causal effect of  on  . The associational risk ratio

Pr[ = 1| = 1]Pr[ = 1| = 0] equals the causal risk ratio Pr[ =1 =

1]Pr[ =0 = 1]. When the exclusion restriction holds as in Figure 9.12, this

effect measure quantifies the causal effect of  on  mediated by –otherwise

the effect measure quantifies a mixture of effects. But why would one be in-

terested in the effect of assigned treatment  rather than in the effect of the

received treatment ? The next section provides some answers to this question.

9.5 The intention-to-treat effect and the per-protocol effect

The per-protocol effect is the causal effect of treatment if all individuals had

adhered to their assigned treatment as indicated in the protocol of the random-

ized experiment. If all study participants adhered to the assigned treatment,

the values of assigned treatment  and received treatment  coincide for all

participants, and therefore the per-protocol effect can be equivalently defined

as either the average causal effect of  or of . Full adherence was implicit

in Chapter 2, where we explained that, in ideal randomized experiments with

perfect adherence to treatment, the treated ( = 1) and the untreated ( = 0)

are exchangeable,  
`

, and association is causation. The associational risk

ratio Pr[ = 1| = 1]Pr[ = 1| = 0] is expected to equal the causal risk

ratio Pr[ =1 = 1]Pr[ =0 = 1], which measures the per-protocol effect on

the risk ratio scale.

Consider now a setting in which not all subjects adhere to the assigned

treatment so that the values of assigned treatment  and received treatment

 differ for some participants. Under imperfect adherence there is no guarantee

that those who obtained a heart transplant  = 1 are a random sample of all

subjects assigned to no heart transplant  = 0. If, for example, the mostIn general, the per-protocol effect

cannot be validly estimated via a

naïve “as treated” analysis, i.e., an

analysis that estimates the unad-

justed association between  and

 .

severely ill subjects in the  = 0 group seek a heart transplant ( = 1) outside

of the study, then the group  = 1 would include a higher proportion of severely

ill subjects than the group  = 0. The groups  = 1 and  = 0 would not be

exchangeable, and thus association between  and  would not be causation.

The associational risk ratio Pr[ = 1| = 1]Pr[ = 1| = 0] would not equal
the per-protocol (causal) risk ratio Pr[ =1 = 1]Pr[ =0 = 1].
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Fine Point 9.2

Pseudo-intention-to-treat analysis. The ITT effect can only be computed in the absence of loss to follow-up or

other forms of censoring. When some subjects do not complete the follow-up, their outcomes are unknown as thus the

analysis needs to be restricted to subjects with complete follow-up. Thus, we can only compute the pseudo-ITT effect

Pr[ = 1| = 1  = 0]Pr[ = 1| = 0  = 0] where  = 0 indicates that a subject remained uncensored until

the measurement of  . As described in Chapter 8, censoring may induce selection bias and thus the pseudo-ITT effect

may be biased in either direction when compared with the true ITT effect. In the presence of loss to follow-up or other

forms of censoring, the analysis of randomized experiments requires appropriate adjustment for selection bias even to

compute the ITT effect.

The previous paragraph describes an example of nonrandom noncompli-

ance, which arises when the reasons why participants receive treatment ( = 1)In general, the per-protocol effect

cannot be validly estimated via a

naïve “per protocol” analysis, i.e.,

an analysis that estimates the un-

adjusted association between  and

 among those who complied with

their assigned treatment.

Hernán and Hernández-Díaz (2012)

discuss the bias of naive as treated

and per protocol analyses using

causal diagrams.

are not random but rather associated with the participants’ prognosis  . Fig-

ure 9.11 depicts this situation with  representing severe illness (1: yes, 0: no).

Nonrandom noncompliance implies confounding for the effect of  on  , as

indicated by the backdoor path ←  →  in Figure 9.11. In the presence of

nonrandom noncompliance, unbiased estimation of the per-protocol effect may

require adjustment for confounding, as if we were dealing with an observational

study rather than with a randomized experiment.

On the other hand, as stated in the previous section, the effect of assigned

treatment  is not confounded. Because  is randomly assigned, exchange-

ability  
`

 holds for the assigned treatment  even if it does not hold

for the received treatment . Association between  and  implies a causal

effect of  on  , whether or not all subjects adhere to the assigned treatment.

However, effect measures for  do not measure “the effect of treating with ”

but rather “the effect of assigning participants to being treated with ” or

“the effect of having the intention of treating with .” We therefore refer to

the causal effect of randomized assignment  as the intention-to-treat effect,

or the ITT effect. Leaving aside random variability, the ITT effect on the riskIn general, the intention-to-treat ef-

fect can be validly estimated via a

naïve “intention-to-treat” analysis,

i.e., an analysis that estimates the

unadjusted association between 

and  .

ratio scale, Pr[ =1 = 1]Pr[ =0 = 1], is equal to the associational risk ratio

Pr[ = 1| = 1]Pr[ = 1| = 0].
Interestingly, the ITT effect is usually the primary, if not the only, effect

measure reported in randomized trials. What is the justification to prefer the

ITT effect over the per-protocol effect?

A frequent answer is that, in double-blind placebo-controlled randomized

experiments, imperfect adherence results in an attenuation–not an exaggeration–

of the effect. That is, the value of the ITT effect is guaranteed to be closer to

the null than the value of the per-protocol effect For example, the ITT risk ra-

tio Pr[ = 1| = 1]Pr[ = 1| = 0] will have a value between 1 and that of
the causal risk ratio Pr[ =1 = 1]Pr[ =0 = 1]. The ITT effect can thus be

interpreted as a lower bound for the per-protocol effect, i.e., as a conservative

effect estimate.

There are, however, three problems with this answer. First, the answer

assumes monotonicity of effects (see Technical Point 5.2), that is, that the

treatment effect is in the same direction for all individuals. If this were not the

case and the degree of noncompliance were high, then the per-protocol effect

may be closer to the null, or even in the opposite direction, compared with

the ITT effect. For example, suppose that 50% of the individuals assigned to

treatment did not comply, and that the direction of the effect in those who
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complied is opposite to that in those who did not comply. Then the ITT effect

would be anti-conservative.Under the sharp causal null hypoth-

esis and the exclusion restriction,

Pr[ = 1| = 1]Pr[ = 1| =

0] = Pr[ =1 = 1]Pr[ =0 =

1] = 1. That is, the ITT analy-

sis preserves the null in double-blind

placebo-controlled randomized ex-

periments.In statistical terms, the

ITT analysis provides a valid–

though perhaps underpowered–-

level test of the null hypothesis of

no average treatment effect.

Null preservation is a key property

because it ensures no effect will be

declared when no effect exists.

Second, even if the direction of the effect is the same for all individuals, the

conservativeness of the ITT effect makes it a dangerous effect measure when

the goal is evaluating a treatment’s safety: one could naïvely conclude that

a treatment  is safe because the ITT effect of  on the adverse outcome is

close to null, even if treatment  causes the adverse outcome in a fraction of

the patients. The explanation may be that most subjects assigned to  = 1

did not take, or stopped taking, the treatment before developing the adverse

outcome.

Third, even if the ITT effect is conservative in placebo-controlled exper-

iments, it may not be when subjects are assigned to two active treatments.

Suppose subjects with a chronic and painful disease were randomly assigned to

either aspirin ( = 1) or ibuprofen ( = 0). The goal was to determine which

drug results in a lower risk of severe pain  after 1 year of follow-up. Unknown

to the investigators, both drugs are equally effective to reduce pain, that is, the

per-protocol (causal) risk ratio Pr[ =1 = 1]Pr[ =0 = 1] is 1. However, in

this particular study, adherence to aspirin happened to be lower than adherence

to ibuprofen. As a result, the ITT risk ratio Pr[ = 1| = 1]Pr[ = 1| = 0]
was greater than 1, and the investigators wrongly concluded that aspirin was

less effective than ibuprofen to reduce severe pain. See Fine Point 9.3 for more

on this issue.

Thus the reporting of ITT effects as the primary findings from a random-

ized experiment is hard to justify for experiments that are not double-blinded

placebo-controlled, and for those aiming at estimating the effect of a treat-

ment’s safety as opposed to a treatment’s efficacy. Unfortunately, computingWhen treatment can vary over

time, we define the per-protocol ef-

fect as the effect that would have

been observed if everyone had ad-

hered to their assigned treatment

strategy throughout the follow-up.

See Toh and Hernán (2008) for an

example of adherence-adjustment

in a randomized clinical trial with

a time-varying treatment.

the per-protocol effect requires adjustment for confounding under the assump-

tion of exchangeability conditional on the measured covariates, or via instru-

mental variable estimation (a particular case of g-estimation, see Chapter 16)

under alternative assumptions.

In summary, in the analysis of randomized experiments there is trade-off

between bias due to potential unmeasured confounding–when choosing the

per-protocol effect–and misclassification bias–when choosing the ITT effect.

Reporting only the ITT effect implies preference for misclassification bias over

confounding, a preference that needs to be justified in each application.
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Fine Point 9.3

Effectiveness versus efficacy. Some authors refer to the per-protocol effect, e.g., Pr[ =1 = 1]Pr[ =0 = 1] as the

treatment’s “efficacy,” and to the ITT effect, e.g., Pr[ =1 = 1]Pr[ =0 = 1], as the treatment’s “effectiveness.” A

treatment’s “efficacy” closely corresponds to what we have referred to as the average causal effect of treatment  in

an ideal randomized experiment. In contrast, a treatment’s “effectiveness” would correspond to the effect of assigning

treatment  in a setting in which the interventions under study will no be optimally implemented, typically because a

fraction of study subjects will not comply. Using this terminology, it is often argued that “effectiveness” is the most

realistic measure of a treatment’s effect because “effectiveness” includes any effects of treatment assignment  not

mediated through the received treatment , and already incorporates the fact that people will not perfectly adhere

to the assigned treatment. A treatment’s “efficacy,” on the other hand, does not reflect a treatment’s effect in real

conditions. Thus one is justified to report the ITT effect as the primary finding from a randomized experiment not only

because it is easy to compute, but also because “effectiveness” is the truly interesting effect measure.

Unfortunately, the above argumentation is problematic. First, the ITT effect measures the effect of assigned

treatment under the adherence conditions observed in a particular experiment. The actual adherence in real life may be

different (e.g., participants in a study may comply better if they are closely monitored), and may actually be affected

by the findings from that particular experiment (e.g., people will be more likely to comply with a treatment after

they learn it works). Second, the above argumentation implies that we should refrain from conducting double-blind

randomized clinical trials because, in real life, both patients and doctors are aware of the received treatment. Thus

a true “effectiveness” measure should incorporate the effects stemming from assignment awareness (e.g., behavioral

changes) that are eliminated in double-blind randomized experiments. Third, individual patients who are planning to

adhere to the treatment prescribed by their doctors will be more interested in the per-protocol effect–the “efficacy” of

treatment–than in the ITT effect. For more details, see the discussion by Hernán and Hernández-Díaz (2012).



Chapter 10
RANDOM VARIABILITY

Suppose an investigator conducted a randomized experiment to answer the causal question “does one’s looking

up to the sky make other pedestrians look up too?” She found an association between her looking up and other

pedestrians’ looking up. Does this association reflect a causal effect? By definition of randomized experiment,

confounding bias is not expected in this study. In addition, no selection bias was expected because all pedestrians’

responses–whether they did or did not look up–were recorded, and no measurement bias was expected because

all variables were perfectly measured. However, there was another problem: the study included only 4 pedestrians,

2 in each treatment group. By chance, 1 of the 2 pedestrians in the “looking up” group, and neither of the 2

pedestrians in the “looking straight” group, was blind. Thus, even if the treatment (the investigator’s looking up)

truly had a strong average effect on the outcome (other people’s looking up), half of the subjects in the treatment

group happened to be immune to the treatment. The small size of the study population led to a dilution of the

estimated effect of treatment on the outcome.

There are two qualitatively different reasons why causal inferences may be wrong: systematic bias and ran-

dom variability. The previous three chapters described three types of systematic biases: selection bias, measure-

ment bias–both of which may arise in observational studies and in randomized experiments–and unmeasured

confounding–which is not expected in randomized experiments. So far we have disregarded the possibility of

bias due to random variability by restricting our discussion to huge study populations. In other words, we have

operated as if the only obstacles to identify the causal effect were confounding, selection, and measurement. It is

about time to get real: the size of study populations in etiologic research rarely precludes the possibility of bias

due to random variability. This chapter discusses random variability and how we deal with it.

10.1 Identification versus estimation

The first nine chapters of this book are concerned with the computation of

causal effects in study populations of near infinite size. For example, when

computing the causal effect of heart transplant on mortality in Chapter 2, we

only had a twenty-subject study population but we regarded each subject in

our study as representing 1 billion identical subjects. By acting as if we could

obtain an unlimited number of individuals for our studies, we could ignore

random fluctuations and could focus our attention on systematic biases due

to confounding, selection, and measurement. Statisticians have a name for

problems in which we can assume the size of the study population is effectively

infinite: identification problems.

Thus far we have reduced causal inference to an identification problem.

Our only goal has been to identify (or, as we often said, to compute) the

average causal effect of treatment  on the outcome  . The concept of iden-

tifiability was first described in Section 3.1–and later discussed in Sections

7.2 and 8.4–where we also introduced some conditions required to identify

causal effects even if the size of the study population could be made arbitrarily

large. These so-called identifying conditions were exchangeability, positivity,

and consistency.

Our ignoring random variability may have been pedagogically convenient

to introduce systematic biases, but also extremely unrealistic. In real research
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projects the study population is not effectively infinite and hence, we cannot

ignore the possibility of random variability. To this end let us return to our

twenty-subject study of heart transplant and mortality in which 7 of the 13

treated subjects died.

Suppose our study population of 20 can be conceptualized as being a ran-

dom sample from a super-population so large compared with the study pop-

ulation that we can effectively regard it as infinite. Then it is natural to

want to make inferences about the super-population. For example, we may

want to make inferences about the super-population probability (or propor-

tion) Pr[ = 1| = ]. We refer to the parameter of interest in the super-

population, the probability Pr[ = 1| = ] in this case, as the estimand.

An estimator is a rule that takes the data from any sample from the super-

population and produces a numerical value for the estimand. This numerical

value for a particular sample is the estimate from that sample. The sample pro-

portion of subjects that develop the outcome among those receiving treatment

level , cPr[ = 1 |  = ], is an estimator of the super-population probability

Pr[ = 1| = ]. The estimate from our sample is cPr[ = 1 |  = ] = 713.

More specifically, we say that 713 is a point estimate. The value of the es-

timate will depend on the particular 20 subjects randomly sampled from the

super-population.

As informally defined in Chapter 1, an estimator is consistent for a par-

ticular estimand if the estimates get (arbitrarily) closer to the parameter

as the sample size increases (see Technical Point 10.1 for the formal defin-

ition). Thus the sample proportion cPr[ = 1 |  = ] consistently esti-

mates the super-population probability Pr[ = 1| = ], i.e., the larger the

number  of subjects in our study population, the smaller the magnitude of

Pr[ = 1| = ]−cPr[ = 1 |  = ] is expected to be. Previous chapters were

exclusively concerned with identification; from now on we will be concerned

with statistical estimation.For an introduction to statistics,

see the book by Wasserman (2004).

For a more detailed introduction,

see Casella and Berger (2002).

Even consistent estimators may result in point estimates that are far from

the super-population value. Large differences between the point estimate and

the super-population value are much more likely to happen when the size of

the study population is small compared with that of the super-population.

Therefore it makes sense to have more confidence in estimates that originate

from larger study populations. Statistical theory allows one to quantify this

confidence in the form of a confidence interval around the point estimate. The

larger the size of the study population, the narrower the confidence interval.

A common way to construct a 95% confidence interval for a point estimate

is to use a 95% Wald confidence interval centered at a point estimate. It is

computed as follows.

First, estimate the standard error of the point estimate under the assump-

tion that our study population is a random sample from a much larger super-

population. Second, calculate the upper limit of the 95% Wald confidence

interval by adding 196 times the estimated standard error to the point esti-

mate, and the lower limit of the 95% confidence interval by substracting 196

times the estimated standard error from the point estimate. For example, con-

sider our estimator cPr[ = 1 |  = ] = ̂ of the super-population parameter

Pr[ = 1| = ] = . Its standard error is

q
(1−)


(the standard error of a

binomial) and thus its estimated standard error is

q
̂(1−̂)


=

q
(713)(613)

13
=

0138. Recall that the Wald 95% confidence interval for a parameter  based on

an estimator b is b±196× b³b´ where b³b´ is an estimate of the (exact or
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large sample) standard error of b. Therefore the 95%Wald confidence interval

for our estimate is 027 to 081. The length and centering of the 95% Wald

confidence interval will vary from sample to sample.

A 95% confidence interval is calibrated if the estimand is contained in theA Wald confidence interval cen-

tered at ̂ can only be guaranteed

to be valid in large samples. For

simplicity, here we assume that our

sample size was sufficiently large for

the validity of our Wald interval.

interval in 95% of random samples, conservative if the estimand is contained

in more than 95% of samples, and anticonservative if contained in less than

95%. We will say that a confidence interval is valid if it is either calibrated or

conservative, i.e. it covers the true parameter at least 95% of the time. We

would like to choose the valid interval whose length is narrowest.

The validity of confidence intervals is based on the variability of estimates

over samples of the super-population, but we only see one of those samples

when we conduct a study. Why should we care about what would have hap-

pened in other samples that we did not see? One answer is that the definition

of confidence interval also implies the following. Suppose we and all of our col-

leagues keep conducting research studies for the rest of our lifetimes. In each

new study, we construct a valid 95% confidence interval for the parameter of

interest. Then, at the end of our lives, we can look back at all the studies we

conducted, and conclude that the parameters of interest were trapped in–or

covered by–the confidence interval in at least 95% of our studies. Unfortu-

nately, we will have no way of identifying the 5% of our studies in which the

confidence interval failed to include the super-population quantity.

Importantly, the 95% confidence interval from a single study does not im-

ply that there is a 95% probability that the estimand is in the interval. In

our example, we cannot conclude that the probability that the estimand lies

between the values 027 and 081 is 95%. The estimand is fixed, which implies

that either it is or it is not included in the interval (027, 081). The probability

that the estimand is included in that interval is either 0 or 1. A confidence

interval only has a frequentist interpretation. Its level (e.g., 95%) refers to

the frequency with which the interval will trap the unknown super-populationIn contrast with a frequentist 95%

confidence interval, a Bayesian 95%

credible interval can be interpreted

as “there is a 95% probability that

the estimand is in the interval”, but

probability is defined as degree-of-

belief. For the relation between

confidence intervals and credible in-

tervals, see Fine Point 11.1

quantity of interest over a collection of studies (or in hypothetical repetitions

of a particular study).

Confidence intervals are often classified as either small-sample or large-

sample (equivalently, asymptotic) confidence intervals. A small-sample valid

(conservative or calibrated ) confidence interval is one that is valid at all sample

sizes for which it is defined. Small-sample calibrated confidence intervals are

sometimes called exact confidence intervals. A large-sample valid confidence

interval is one that is valid only in large samples. A large-sample exact 95%

confidence interval is one whose coverage becomes arbitrarily close to 95% as

the sample size increases. The Wald confidence interval for Pr[ = 1| =

] =  mentioned above is a large-sample valid confidence interval, but not

a small-sample valid interval. (There do exist small-sample valid confidence

intervals for , but they are not often used in practice.) When the sampleThere are many valid large-sample

confidence intervals other than the

Wald interval (Casella and Berger,

2002). One of these might be pre-

ferred over the Wald interval, which

can be badly anti-conservative in

small samples (Brown et al, 2001).

size is small, a valid large-sample confidence interval, such as the Wald 95%

confidence interval of our example above, may not be valid. In this book,

when we use the term 95% confidence interval, we mean a large-sample valid

confidence interval, like a Wald interval, unless stated otherwise. See also Fine

Point 10.1.

However, not all estimators can be used to center a valid Wald confidence

interval, even in large samples. Most users of statistics will consider an esti-

mator unbiased if it can center a valid Wald interval and biased if it cannot

(see Technical Point 10.1 for details). For now, we will equate the term bias

with the inability to center Wald confidence intervals.
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Fine Point 10.1

Honest confidence intervals. The smallest sample size at which a large-sample, valid 95% confidence interval covers

the true parameter at least 95% of the time may depend on the value of the true parameter. We say a large-sample valid

95% confidence interval is uniform or honest if there exists a sample size  at which the interval is guaranteed to cover

the true parameter value at least 95% of the time, whatever be the value of the true parameter. For a large-sample,

honest confidence interval, the smallest such  is generally unknown and is difficult to determine even by simulation.

See Robins and Ritov (1997) for technical details.

In the remainder of the text, when we refer to confidence intervals, we will generally mean large-sample honest

confidence intervals. Note that, by definition, any small-sample valid confidence interval is uniform or honest for all 

for which the interval is defined.

10.2 Estimation of causal effects

Suppose our heart transplant study was a marginally randomized experiment,

and that the 20 subjects were a random sample of all subjects in a nearly

infinite super-population of interest. Suppose further that all subjects in the

super-population were randomly assigned to either  = 1 or  = 0, and that all

of them adhered to their assigned treatment. Exchangeability of the treated

and the untreated would hold in the super-population, i.e., Pr[  = 1] =

Pr[ = 1| = ], and therefore the causal risk ratio Pr[ =1 = 1]Pr[ =0 =

1] equals the associational risk ratio Pr[ = 1| = 1]Pr[ = 1| = 0] in the
super-population.

Because our study population is a random sample of the super-population,

the sample proportion of subjects that develop the outcome among those with

observed treatment value  = , cPr[ = 1 |  = ], is a consistent estimator

or the super-population probability Pr[ = 1| = ]. Because of exchange-

ability in the super-population, the sample proportion cPr[ = 1 |  = ]

is also a consistent estimator of Pr[  = 1]. Thus testing the causal null

hypothesis Pr[ =1 = 1] = Pr[ =0 = 1] boils down to comparing, via stan-

dard statistical procedures, the sample proportions cPr [ = 1 |  = 1] = 713
andcPr [ = 1 |  = 0] = 37. Standard statistical methods can also be used to
compute 95% confidence intervals for the causal risk ratio and risk difference in

the super-population, which are estimated by (713)(37) and (713)− (37),
respectively. Slightly more involved, but standard, statistical procedures are

used in observational studies to obtain confidence intervals for standardized,

IP weighted, or stratified association measures.

There is an alternative way to think about sampling variability in ran-

domized experiments. Suppose only subjects in the study population, not all

subjects in the super-population, are randomly assigned to either  = 1 or

 = 0. Because of the presence of random sampling variability, we do not

expect that exchangeability will exactly hold in our sample. For example, sup-

pose that only the 20 subjects in our study were randomly assigned to either

heart transplant ( = 1) or medical treatment ( = 0). Each subject can be

classified as good or bad prognosis at the time of randomization. We say that

the groups  = 0 and  = 1 are exchangeable if they include exactly the same

proportion of subjects with bad prognosis. By chance, it is possible that 2 out

of the 13 subjects assigned to  = 1 and 3 of the 7 subjects assigned to  = 0

had bad prognosis. However, if we increased the size of our sample then there

is a high probability that the relative imbalance between the groups  = 1 and
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Technical Point 10.1

Bias and consistency in statistical inference. We have discussed systematic bias (due to unknown sources of

confounding, selection, or measurement error) and consistent estimators in earlier chapters. Here we discuss these and

other concepts of bias, and describe how they are related.

To provide a formal definition of consistent estimator for an estimand , suppose we observe  independent, iden-

tically distributed (i.i.d.) copies of a vector-valued random variable whose distribution  lies in a setM of distributions

(our model). Then the estimator b is consistent for  =  ( ) if b converges to  in probability under  , i.e.,  ∈M
| Pr

h°°°b −  ( )
°°°  

i
|→ 0 as →∞ for every   0.

The estimator b is exactly unbiased under  if E

hbi =  ( ). The exact bias under  is the difference

E

hbi −  ( ). Note that we denote the estimator by b rather than by simply b to emphasize that the estimate
depends on the sample size . On the other hand, the parameter  ( ) is a fixed, though unknown, quantity.

Systematic bias precludes both consistency and exact unbiasedness of an estimator. Because most studies have

some degree of unknown systematic bias, we cannot actually expect that the 95% confidence intervals around the

estimate ̂ will really cover the parameter  in at least 95% of the studies. That is, in reality, our actual intervals will

generally be anti-conservative.

Consistent estimators are not guaranteed to center a valid Wald confidence interval. Most researchers (e.g.,

epidemiologists) will declare an estimator unbiased only if it can center a valid Wald confidence interval. As argued

by Robins (1987), this definition of bias is essentially equivalent to the definition of uniform asymptotic unbiasedness

because in general only uniformly asymptotic unbiased estimators can center a valid Wald interval. All inconsistent

estimators (such as those resulting from unknown systematic bias), and some consistent estimators, are biased under

this definition, which is the one we use in the main text.

 = 0 would decrease.

Under this conceptualization, there are two possible targets for inference.

First, investigators may be agnostic about the existence of a super-population

and restrict their inference to the sample that was actually randomized. This is

referred to as randomization-based inference, and requires taking into account

some technicalities that are beyond the scope of this book. Second, investiga-See Robins (1988) for a discussion

of randomization-based inference. tors may still be interested in making inferences about the super-population

from which the study sample was randomly drawn. From an inference stand-

point, this latter case turns out to be mathematically equivalent to the con-

ceptualization of sampling variability described at the start of this section in

which the entire super-population was randomly assigned to treatment. That

is, randomization followed by sampling is equivalent to sampling followed by

randomization.

In many cases we are not interested in the first target. To see why, consider

a study that compares the effect of two first-line treatments on the mortality

of cancer patients. After the study ends, we may determine that it is better

to initiate one of the two treatments, but this information is now irrelevant

to the actual study participants. The purpose of the study was not to guide

the choice of treatment for patients in the study but rather for a group of

individuals similar to–but larger than–the studied sample. Heretofore we

have assumed that there is a larger group–the super-population–from which

the study participants were randomly sampled. We now turn our attention to

the concept of the super-population.
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10.3 The myth of the super-population

As discussed in Chapter 1, there are two sources of randomness: sampling vari-

ability and nondeterministic counterfactuals. Consider our estimate cPr[ =

1 |  = 1] = ̂ = 713 of the super-population risk Pr[ = 1| = ] = .

Nearly all investigators would report a binomial confidence ̂±196
q

̂(1−̂)


=

713 ± 196
q

(713)(613)

13
for the probability . If asked why these intervals,

they would say it is to incorporate the uncertainty due to random variability.

But these intervals are valid only if ̂ has a binomial sampling distribution. So

we must ask when would that happen. In fact there are two scenarios underRobins (1988) discussed these two

scenarios in more detail. which ̂ has a binomial sampling distribution.

• Scenario 1. The study population is sampled at random from an es-

sentially infinite super-population, sometimes referred to as the source

or target population, and our estimand is the proportion  = Pr[ =

1| = 1] of treated subjects who developed the outcome in the super-

population. It is then mathematically true that, in repeated random

samples of size 13 from the treated subjects in the super-population, the

number of subjects who develop the outcome among the 13 is a binomial

random variable with success probability Pr[ = 1| = 1]. As a result,
the 95% Wald confidence interval calculated in the previous section is

asymptotically exact for Pr[ = 1| = 1]. This is the model we have

considered so far.

• Scenario 2. The study population is not sampled from any super-population.
Rather (i) each subject  among the 13 treated subjects has an individual

nondeterministic (stochastic) counterfactual probability =1 (ii) the ob-

served outcome  =  =1
 for subject  occurs with probability =1 and

(iii) =1 takes the same value, say , for each of the 13 treated subjects.

Then the number of subjects who develop the outcome among the 13

treated is a binomial random variable with success probability . As a

result, the 95% confidence interval calculated in the previous section is

asymptotically exact for .

Scenario 1 assumes a hypothetical super-population. Scenario 2 does not.

However, Scenario 2 is untenable because the probability =1 of developing

the outcome when treated will almost certainly vary among the 13 treated

subjects due to between-individual differences in risk. For example we would

expect the probability of death =1 to have some dependence on a subject’s

genetic make-up. If the =1 are nonconstant then the estimand of interest in

the actual study population would generally be the average, say , of the 13

=1 . But in that case the number of treated who develop the outcome is not

a binomial random variable with success probability  and the 95% confidence

interval for  calculated in the previous section is not asymptotically exact

(but rather asymptotically conservative.)

Therefore, any investigator who reports a binomial confidence interval for

Pr[ = 1| = ], and who acknowledges that there exists between-individual

variation in risk, must be implicitly assuming Scenario 1: the study subjects

were sampled from a near-infinite super-population and that all inferences are

concerned with quantities from that super-population. Under Scenario 1, the

number with the outcome among the 13 treated is a binomial variable regard-

less of whether the underlying counterfactual is deterministic or stochastic.
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Fine Point 10.2

Quantitative bias analysis. The width of the usual Wald-type confidence intervals is a function of the standard error of

the estimator and thus reflects only uncertainty due to random error. However, the possible presence of systematic bias

due to confounding, selection, or measurement is another important source of uncertainty around effect estimates. This

uncertainty due to systematic bias is well recognized by investigators and usually a central part of the discussion section

of scientific articles. However, most discussions revolve around informal judgments about the potential direction and

magnitude of the systematic bias. Some authors argue that quantitative methods need to be used to produce intervals

around the effect estimate that integrate random and systematic sources of uncertainty. These methods, referred to as

quantitative bias analysis. See the book by Lash, Fox, and Fink (2009). Bayesian alternatives are discussed by Greenland

and Lash (2008), and Greenland (2009a, 2009b).

An advantage of working under the hypothetical super-population scenario

is that nothing hinges on whether the world is deterministic or nondetermin-

istic. On the other hand, the super-population is generally a fiction; in most

studies subjects are not randomly sampled from any near-infinite population.

Why then has the myth of the super-population endured? One reason is that

it leads to simple statistical methods.

A second reason has to do with generalization. As we mentioned in the

previous section, investigators generally wish to generalize their findings about

treatment effects from the study population (e.g., the 20 individuals in our

heart transplant study) to some large target population (e.g., all immortals in

the Greek pantheon). The simplest way of doing so is to assume the study

population is a random sample from a large population of subjects who are

potential recipients of treatment. Since this is a fiction, a 95% confidence

interval computed under Scenario 1 should be interpreted as covering the

super-population parameter had, often contrary to fact, the study subjects

been sampled randomly from a near infinite super-population. In other words,

confidence intervals obtained under Scenario 1 should be viewed as a what-if

statements.

It follows from the above that an investigator might not want to entertain

Scenario 1 if the size of the pool of potential recipients is not much larger

than the size of the study population, or if there is selection bias, i.e., the

target population of potential recipients is believed to differ from the study

population to an extent that cannot be accounted for by sampling variability

(see Fine Point 10.2).

We will accept that subjects were randomly sampled from a super-population,

and explore the consequences of random variability for causal inference in that

context. We first explore this question in a simple randomized experiment.

10.4 The conditionality “principle”

Table 10.1 summarizes the data from a randomized experiment to estimate

the average causal effect of treatment  (1: yes, 0: no) on the 1-year risk of

death  (1: yes, 0: no). The experiment included 240 subjects, 120 in each

treatment group. The associational risk ratio is Pr[ = 1| = 1]Pr[ =

1| = 0] = 2442 = 057. Suppose the experiment had been conducted in

a super-population of near-infinite size, the treated and the untreated would
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be exchangeable, i.e.,   q , and the associational risk ratio would equal

the causal risk ratio Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
. Suppose the study in-

vestigators computed a 95% confidence interval (037 088) around the point

estimate 057 and published an article in which they concluded that treatment

was beneficial because it reduced the risk of death by 43%.Table 10.1

 = 1  = 0

 = 1 24 96

 = 0 42 78

However, the study population had only 240 individuals and is therefore

likely that, due to chance, the treated and the untreated are not perfectly

exchangeable. Random assignment of treatment does not guarantee exact ex-

changeability within subjects in the trial; it only guarantees that any depar-

tures from exchangeability are due to random variability rather than to a

systematic bias. In fact, one can view the uncertainty resulting from our igno-

rance of the chance correlation between unmeasured baseline risk factors and

the treatment  in the study sample as contributing to the length 051 of the

confidence interval.

A few months later the investigators remember that information on a third

variable, cigarette smoking  (1: yes, 0: no), had also been collected and

decide to take a look at it. The study data, stratified by , is shown in Table

10.2. Unexpectedly, the investigators find that the probability of receiving

treatment for smokers (80120) is twice that for nonsmokers (40120), whichTable 10.2

L = 1  = 1  = 0

 = 1 4 76

 = 0 2 38

L = 0  = 1  = 0

 = 1 20 20

 = 0 40 40

suggests that the treated and the untreated are not exchangeable and thus

that some form of adjustment for smoking is necessary. When the investigators

adjust via stratification, the associational risk ratio in smokers, Pr[ = 1| =
1  = 1]Pr[ = 1| = 0  = 1], is equal to 1. The associational risk ratio

in nonsmokers, Pr[ = 1| = 1  = 0]Pr[ = 1| = 0  = 0], is also

equal to 1. Treatment has no effect in both smokers and nonsmokers, even

though the marginal risk ratio 057 suggested a net beneficial effect in the

study population.

These new findings are disturbing to the investigators. Either someone did

not assign the treatment at random (malfeasance) or randomization did not

result in approximate exchangeability (very very bad luck). A debate ensues

among the investigators. Should they retract their article and correct the

results? They all agree that the answer to this question would be affirmative

if the problem were due to malfeasance. If that were the case, there would

be confounding by smoking and the effect estimate should be adjusted for

smoking. But they all agree that malfeasance is impossible given the study’s

quality assurance procedures. It is therefore clear that the association between

smoking and treatment is entirely due to bad luck. Should they still retract

their article and correct the results?

One investigator says that they should not retract the article. His argument

goes as follows: “OK, randomization went wrong for smoking, but why should

we privilege the adjusted over the unadjusted estimator? It is likely that

imbalances on other unmeasured factors  cancelled out the effect of the chance

imbalance on , so that the unadjusted estimator is still the closer to the true

value in the super-population.” A second investigator says that they should

retract the article and report the adjusted null result. Her argument goes as

follows: “We should adjust for  because the strong association between  and

 introduces confounding in our effect estimate. Within levels of , we have

mini randomized trials and the confidence intervals around the corresponding

point estimates will reflect the uncertainty due to the possible  - associations

conditional on .”

To determine which investigator is correct, here are the facts of the matter.

Suppose, for simplicity, the true causal risk ratio is constant across strata of

, and suppose we could run the randomized experiment trillions of times.
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We then select only (i.e., condition on) those runs in which smoking  and

treatment  are as strongly positively associated as in the observed data. We

would find that the fraction of these runs in which any given risk factor  for

 was positively associated with  essentially equals the number of runs in

which it was negatively associated. [This is true even if  and  are highly

correlated in both the super-population and in the study data, and further-

more both are correlated with  in the study data.] As a consequence, the

adjusted estimate of the treatment effect is unbiased but the unadjusted esti-

mate is greatly biased when averaged over these runs. Unconditionally–over

all the runs of the experiment–both the unadjusted and adjusted estimates

are unbiased but the variance of the adjusted estimate is smaller than that of

the unadjusted estimate. That is, the adjusted estimator is both conditionally

unbiased and unconditionally more efficient. Hence either from the conditional

or unconditional point of view, the Wald interval centered on the adjusted esti-

mator is the correct analysis and the article needs to be retracted. The second

investigator is correct.

The idea that one should condition on the observed - association is an

example of what is referred to in the statistical literature as the conditionality

principle. In statistics, the observed - association is said to be an ancillary

statistic for the causal risk ratio. The conditionality principle states that infer-

ence on a parameter should be performed conditional on all ancillary statistics

(see Technical Point 10.2 for details). The discussion in the preceding para-

graph then implies that many researchers intuitively follow the conditionality

principle when they consider an estimator to be biased if it cannot center a

valid Wald confidence interval conditional on any ancillary statistics. That is,

our previous definition of bias was not sufficiently restrictive. From now on,

we will say that an estimator is unbiased if and only if it can center a valid

Wald interval conditional on all ancillary statistics.

When confronted with the frequentist argument that “Adjustment for 

is unnecessary because unconditionally–over all the runs of the experiment–

the unadjusted estimate is unbiased, investigators that intuitively apply the

conditionality principle would aptly respond “Why should the various -

associations in other hypothetical studies affect what I do in my study? In my

study  is a confounder and adjustment is needed to eliminate confounding

bias.” This is a convincing argument for both randomized experiments and

observational studies when, as above, the number of measured confounders is

not large. When the number of measured variables is large however, following

the conditionality principle is no longer a wise strategy.

10.5 The curse of dimensionality

If the investigators had measured 100 pre-treatment binary variables rather

than only one, then the pre-treatment variable  formed by combining the 100

variables  = (1  100) has 2
100 strata. When, as in this case, there are

many possible combinations of values of the pretreatment variables, we say

that the data is of high dimensionality. For simplicity, suppose that there is

no multiplicative effect modification by , i.e., the super-population risk ratio

Pr[ = 1| = 1  = ]Pr[ = 1| = 0  = ] is constant across the 2100

strata. In particular, suppose that the constant stratum-specific risk ratio is

1.

The investigators debate again whether to retract the article and report
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Technical Point 10.2

A formal statement of the conditionality principle. The likelihood for the observed data has three factors: the

density of  given  and , the density of  given , and the marginal density of . Consider a simple example with

one dichotomous , exchangeability given , and in which the parameter of interest is the stratum-specific causal risk

ratio  = Pr ( = 1| =   = 1) Pr ( = 1| =   = 0) known to be constant across strata of . Then the

likelihood of the data is
Y
=1

Y
=1

 (| ; p0)×  (|;)×  (; )

where 0 = (01 02) with 0 = Pr ( = 1| =   = 0), , and  are nuisance parameters associated with the

conditional density of  given  and , the conditional density of  given , and the marginal density of , respectively.

See, for example, Casella and Berger (2002).

The data on  and  are said to be exactly ancillary for the parameter of interest when, as in this case, the

distribution of the data conditional on these variables depends on the parameter of interest, but the joint density of 

and  does not share parameters with  (| ; p0). The conditionality principle states that one should always

perform inference on the parameter of interest conditional on any ancillary statistics.

their estimate of the stratified risk ratio. They have by now agreed that they

should follow the conditionality principle because the marginal risk ratio 057 is

biased. However, they notice that, when there are 2100 strata, a 95% confidence

interval for the conditional risk ratio is much less precise than the marginal

risk ratio. This is exactly the opposite of what was found when  had only 2

strata. In fact, the 95% confidence interval may be so wide as to be completely

uninformative.

To see why, note that, because 2100 is much larger than the number of

individuals (240), there will at most only a few strata of  that will contain

both a treated and an untreated subject. Suppose only one of 2100 strata

contains a single treated subject and and a single untreated subject, and no

other stratum contains both a treated and untreated subject. Then the 95%

confidence interval for the risk ratio conditional on the observed distribution

of  within the 2100 strata of  is (0∞) because in the single stratum with

both a treated and an untreated subject, the empirical risk ratio could be ∞,
0, or 1 depending on the value of  in each subject.

What should the investigators do? By trying to do the right thing–

following the conditionality principle–in the simple setting with one dichoto-

mous variable, they put themselves in a corner for the high-dimensional set-

ting. This is the curse of dimensionality : conditional on all 100 covariates

the marginal estimator is still biased, but now the conditional estimator is

uninformative. This shows that, just because conditionality is compelling inRobins and Wasserman (1999) pro-

vide a technical description of the

curse of dimensionality.

simple examples, it should not be raised to a principle since it cannot be car-

ried through high-dimensional models. Though we have discussed this issue

in the context of a randomized experiment, our discussion applies equally to

observational studies.

Finding a solution to the curse of dimensionality is not straightforward.

One approach is to reduce the dimensionality of the data by excluding some

variables from the analysis. Many procedures to eliminate variables from the

analysis are ad hoc. For example, investigators often exclude variables in  that

they believe to be unimportant or that happen to be weakly associated with the

treatment  or the outcome  in the study sample, where “weak association”

is defined by using some arbitrary threshold (e.g., a p-value greater than 010).
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Many software packages use automatic procedures to select the covariates

to include in a model such as forward selection, backward selection, stepwise

selection. These procedures do not preserve the interpretation of frequentist

confidence intervals (see Chapter REF). When ad hoc or automatic proceduresMultiple authors have studied the

problems of ad hoc or automatic

variable selection. See Greenland

(2008) for a list of citations.

are employed, 95% confidence intervals tend to be too narrow and thus invalid:

they fail to cover the causal parameter of interest at least 95% of the time.

The degree of undercoverage will be greater when there is some degree of con-

founding in the super-population since, in that case, Wald confidence intervals

will not be centered on an unbiased estimator of the causal effect.

Unfortunately, there is not much we can do about the curse of dimen-

sionality because the statistical theory to provide correct (honest) confidence

intervals for high-dimensional data is still under development. In practice, the

most common approach to deal with the curse of dimensionality is to specify

low-dimensional, parsimonious statistical models. Using such models results

in increased precision of the estimates at the expense of potential bias if the

models are incorrect. Part II of this book is devoted to models for causal

inference.
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Technical Point 10.3

Comparison between adjusted and unadjusted estimators. Consider a setting in which the marginal risk ratio

 and the stratified risk ratios  within any level of the variables  are equal. This would be the case in a

randomized experiment, in which  and  are known to be independent in the super-population, with no multiplicative

effect modification by . The maximum likelihood estimator (MLE) [ of the stratified risk ratio  , which

corresponds to the conditional estimator discussed in the text, is an unconditionally efficient (i.e., the most precise)

estimator when the sample size  is much greater than the dimension of the nuisance parameter p0 (see Technical Point

10.2).

Because of the likelihood factorization , the MLE [ depends only on the first factor of the likelihood
Y
=1

 (| ; p0). That is, the MLE does not care about how  and  were generated. In particular, it does

not matter whether  is known as in a randomized experiment, or unknown as in an observational study. Since the

MLE is more efficient than the marginal risk ratio estimator d that ignores data on , even statisticians who do not

accept the conditionality principle will still prefer the stratified over the marginal estimator.

The reason that MLE is both unconditionally more efficient and conditionally less biased than the marginal estimator

is not a coincidence. In fact, both properties of the MLE are logically equivalent. To show this we use the facts thatd
and [ have the same conditional variance, i.e., 

³d|AL´ = 
³
[|AL

´
and that the MLE is

unbiased conditional on (AL) = (),  = 1  , i.e., E
n
[|AL

o
=  . It then follows from the

identities


³d´ = E h ³d|AL

´i
+ 

h
E
nd|ALoi


³
[

´
= E

h


³
[ |AL

´i
that 

³d´  
³
[

´
if and only if E

nd|ALo  0 with positive probability. The above expectations

and variances are asymptotic; a more precise statement was provided by Robins and Morgenstern (1987).

But this argument breaks down with high-dimensional data. To see this, consider the case where  has 2100

joint strata so the dimension of the nuisance parameter p0 is 2
100. Because the MLE needs to estimate each of the

2100 nuisance parameters, little or no information is left in the data to estimate the parameter of interest  so the

unconditional variance of the MLE will be very large, even infinite. (Also, the MLE will fail to be asymptotically unbiased

conditional on AL). The variance of the marginal estimator is essentially unaffected by the dimension of p and thus

will be more efficient than the MLE. The MLE is only guaranteed to be more efficient than the marginal estimator when

the ratio of number of subjects to the number of parameters is large (a frequently used rule of thumb is a minimum ratio

of 10, though the minimum ratio depends on the characteristics of the data). Note the marginal estimator uses prior

information not used by the conditional estimator. In our example, the marginal estimator uses the information that 

and  are known not to be associated in the super-population. Without this prior information the marginal estimator

would not be an unbiased estimator of the .




