
C H A P T E R 3

A Classification of Assignment Mechanisms

3.1 INTRODUCTION

As discussed in Chapter 1, the fundamental problem of causal inference is the presence
of missing data – for each unit we can observe at most one of the potential outcomes.
A key component in a causal analysis is, therefore, what we call the assignment mech-
anism: the process that determines which units receive which treatments, hence which
potential outcomes are realized and thus can be observed, and, conversely, which poten-
tial outcomes are missing. In this chapter we introduce a taxonomy of assignment
mechanisms that will serve as the organizing principle for this text. Formally, the assign-
ment mechanism describes, as a function of all covariates and of all potential outcomes,
the probability of any vector of assignments. We consider three basic restrictions on
assignment mechanisms:

1. Individualistic assignment: This limits the dependence of a particular unit’s assign-
ment probability on the values of covariates and potential outcomes for other
units.

2. Probabilistic assignment: This requires the assignment mechanism to imply a non-
zero probability for each treatment value, for every unit.

3. Unconfounded assignment: This disallows dependence of the assignment mechanism
on the potential outcomes.

Following Cochran (1965), we also make a distinction between experiments, where
the assignment mechanism is both known and controlled by the researcher, and observa-
tional studies, where the assignment mechanism is not known to, or not under the control
of, the researcher.

We consider three classes of assignment mechanisms, covered in Parts II, III, IV, V,
and VI of this book. The first class, studied in Part II, corresponds to what we call
classical randomized experiments. Here the assignment mechanism satisfies all three
restrictions on the assignment process, and, moreover, the researcher knows and controls
the functional form of the assignment mechanism. Such designs are well understood,
and in such settings causal effects are often relatively straightforward to estimate, and,
moreover, it is often possible to do finite sample inference.

We refer to the second class of assignment mechanisms, studied in Parts III and
IV of this text, as regular assignment mechanisms. This class comprises assignment
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32 A Classification of Assignment Mechanisms

mechanisms that, like classical randomized experiments, are individualistic, proba-
bilistic, and unconfounded, but, in contrast to classical randomized experiments, the
assignment mechanism need not be under the control of, or known by, the researcher.
When the assignment mechanism is not under the control of the researcher, the restric-
tions on the assignment mechanism that make it regular are now usually assumptions,
and they are typically not satisfied by design, as they are in classical randomized exper-
iments. In general, we will not be sure whether these assumptions hold in any specific
application, and in later chapters we will discuss methods for assessing their plausibility,
as well as investigating the sensitivity to violations of them.

In practice, the regular observational study is a setting of great importance. It has been
studied extensively from a theoretical perspective and is widely used in empirical work.
Many, but not all, of the methods applicable to randomized experiments can be used,
but often modifications to the specific methods are critical to enhance the credibility of
the results. The simple methods that suffice in the context of randomized experiments
tend to be more controversial when applied with regular assignment mechanisms. The
concerns these simple methods raise are particularly serious if the covariate distribu-
tions under the various treatment regimes are substantially different, or unbalanced in
our terminology. In that case, it can be very important, for the purpose of making cred-
ible causal inferences, to have an initial, what we call design stage of the study. In this
design stage, the data on covariate values and treatment assignment (but, importantly,
not the final outcome data) are analyzed in order to assemble samples with improved
balance in covariate distributions, somewhat in parallel with the design stage of ran-
domized experiments. Often in this setting, the number of pre-treatment variables is
substantial, typically because, conditional on a large number of pre-treatment variables,
unconfoundedness is more plausible. Although this creates no conceptual problems, it
makes the practical problem of drawing credible causal inferences more challenging.

In Part V of the book we discuss methods for assessing the plausibility of the
unconfoundedness assumption, and sensitivity analyses for assessing the implications
of violations of it. In Part VI we analyze a number of assignment mechanisms where
the assignment itself is regular, but the treatment received is not equal to the treatment
assigned for all units. Thus, although the treatment assigned is unconfounded, the treat-
ment received is not unconfounded, because the probability of receiving the active versus
control treatment depends on potential outcomes. Such settings have arisen in the econo-
metric literature to account for settings where individuals choose the treatment regime,
at least partly based on expected benefits associated with the two treatment regimes.
Although, as a general matter, such optimizing behavior is not inconsistent with regular
assignment mechanisms, in some cases it suggests assignment mechanisms associated
with so-called instrumental variable methods.

The rest of this chapter is organized as follows. In the next section we introduce
additional notation. In Section 3.3 we define the assignment mechanism, unit-level
assignment probabilities, and the propensity score. In Section 3.4 we formally intro-
duce the three general restrictions we consider imposing on assignment mechanisms.
We then use those restrictions to define classical randomized experiments in Section
3.6. In Section 3.7 we define regular assignment mechanisms as a special class
of observational studies. The next section, Section 3.8, discusses some non-regular
assignment mechanisms. Section 3.9 concludes.
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3.2 Notation 33

3.2 NOTATION

Continuing the potential outcomes discussion in Chapter 1, let us consider a population
of N units, indexed by i = 1, . . . , N. The ith unit in this population is characterized by
a K-component row vector of covariates (also referred to as pre-treatment variables or
attributes), Xi, with X the N ×K matrix of covariates in the population with ith row equal
to Xi. In social science applications, the elements of Xi may include an individual’s
age, education, socio-economic status, labor market history, pre-test scores, sex, and
marital status. In biomedical applications, the covariates may also include measures of
an individual’s medical history, and family background information. Most important is
that covariates are known a priori to be unaffected by the assignment of treatment.

For each unit there is also a pair of potential outcomes, Yi(0) and Yi(1), denoting
its outcome values under the two values of the treatment: Yi(0) denotes the outcome
under the control treatment, and Yi(1) denotes the outcome under the active treatment.
Notice that when using this notation, we tacitly accept the Stable Unit Treatment Value
Assumption (SUTVA) that treatment assignments for other units do not affect the out-
comes for unit i, and that each treatment defines a unique outcome for each unit. The
latter requirement implies that there is only a single version of the active and control
treatments for each unit. Let Y(0) and Y(1) denote the N-component vectors (or the
N-vectors for short) of the potential outcomes. More generally, the potential outcomes
could themselves be multi-component row vectors, in which case Y(0) and Y(1) would
be matrices with the ith rows equal to Yi(0) and Yi(1), respectively. Here, we largely
focus on the situation where the potential outcomes are scalars, although in most cases
extensions to vector-valued outcomes are conceptually straightforward.

Next, the N-component columns vector of treatment assignments is denoted by
W, with ith element Wi ∈ {0, 1}, with Wi = 0 if unit i received the control treatment,
and Wi = 1 if this unit received the active treatment. Let Nc = ∑N

i=1 (1 − Wi) and
Nt =

∑N
i=1 Wi be the number of units assigned to the control and active treatment

respectively, with Nc + Nt = N.
In Chapter 1 we defined the realized and possibly observed outcomes

Yobs
i = Yi(Wi) =

{
Yi(0) if Wi = 0,

Yi(1) if Wi = 1,
(3.1)

and the missing outcomes:

Ymis
i = Yi(1 − Wi) =

{
Yi(1) if Wi = 0,

Yi(0) if Wi = 1.
(3.2)

Yobs and Ymis are the corresponding N-vectors (or matrices in the case with multiple
outcomes). We can invert these relations and characterize the potential outcomes in terms
of the observed and missing outcomes:

Yi(0) =
{

Ymis
i if Wi = 1,

Yobs
i if Wi = 0,

and Yi(1) =
{

Ymis
i if Wi = 0,

Yobs
i if Wi = 1.

(3.3)
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34 A Classification of Assignment Mechanisms

This characterization illustrates that the causal inference problem is fundamentally a
missing data problem: if we impute the missing outcomes, we “know” all the potential
outcomes and thus the value of any causal estimand in the population of N units.

3.3 ASSIGNMENT PROBABILITIES

To introduce the taxonomy of assignment mechanisms used in this text requires some
formal mathematical terms. First, we define the assignment mechanism to be the function
that assigns probabilities to all 2N possible values for the N-vector of assignments W
(each unit can be assigned to treatment or control), given the N-vectors of potential
outcomes Y(0) and Y(1), and given the N × K matrix of covariates X:

Definition 3.1 (Assignment Mechanism)
Given a population of N units, the assignment mechanism is a row-exchangeable
function Pr(W|X, Y(0), Y(1)), taking on values in [0, 1], satisfying∑

W∈{0,1}N

Pr(W|X, Y(0), Y(1)) = 1,

for all X, Y(0), and Y(1).

The set W = {0, 1}N is the set of all N-vectors with all elements equal to 0 or 1. By
the assumption that the function Pr( · ) is row exchangeable, we mean that the order
in which we list the N units within the vectors or matrices is irrelevant. Note that this
probability Pr(W|X, Y(0), Y(1)) is not the probability of a particular unit receiving the
treatment. Instead, it is the probability that a particular value for the full assignment –
first two units treated, third a control, fourth treated, etc. – will occur. The definition
requires that the probabilities across the full set of 2N possible assignment vectors W
sum to one. Note also that some assignment vectors W may have zero probability. For
example, if we were to design a study to evaluate a new drug, it is likely that we would
want to rule out the possibility that all subjects received the control drug. We could do
so by assigning zero probability to the vector of assignments W with Wi = 0 for all i, or
perhaps even assign zero probability to all vectors of assignments other than those with∑N

i=1 Wi = N/2, for even values of the population size N.
In addition to the probability of joint assignment for the entire population, we are often

interested in the probability of an individual unit being assigned to the active treatment:

Definition 3.2 (Unit Assignment Probability)
The unit-level assignment probability for unit i is

pi(X, Y(0), Y(1)) =
∑

W:Wi=1

Pr(W|X, Y(0), Y(1)).

Here we sum the probabilities across all possible assignment vectors W for which
Wi = 1. Out of the set of 2N different assignment vectors, half (that is 2N−1) have
the property that Wi = 1. The probability that unit i is assigned to the control treatment
is 1 − pi(X, Y(0), Y(1)). Note that according to this definition, the probability that unit i
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3.3 Assignment Probabilities 35

receives the treatment can be a function of its own covariates Xi and potential outcomes
Yi(0) and Yi(1), and it generally is also a function of the covariate values, and potential
outcomes, and treatment assignments of the other units in the population.

We are also often interested in the average of the unit-level assignment probabilities
for subpopulations with a common value of the covariates, for example, Xi = x. We label
this function the propensity score at x. In the finite population case the definition of the
propensity score follows.

Definition 3.3 (Finite Population Propensity Score)
The propensity score at x is the average unit assignment probability for units with Xi = x,

e(x) = 1

N(x)

∑
i:Xi=x

pi(X, Y(0), Y(1))

where N(x) = #{i = 1, . . . , N|Xi = x} is the number of units with Xi = x. For values x
with N(x) = 0, the propensity score is defined to be zero.

To illustrate these definitions more concretely, consider four examples, the first three
with with two units, and the last one with three units.

EXAMPLE 1 Suppose we have two units. Then there are four (22) possible values for W,

W ∈
{(

0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)}
.

We conduct a randomized experiment where all treatment assignments have equal
probability. Then the assignment mechanism is equal to

Pr(W|X, Y(0), Y(1)) = 1/4, for W ∈
{(

0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)}
. (3.4)

In this case the unit assignment probability pi(X, Y(0), Y(1)) is equal to 1/2 for both
units i = 1, 2. In a randomized experiment with no covariates, the propensity score is
equal to the unit assignment probabilities, here all equal to 1/2. �

EXAMPLE 2 We conduct a randomized experiment with two units where only those
assignments with exactly one treated and one control unit are allowed. Then the
assignment mechanism is

Pr(W|X, Y(0), Y(1)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/2 if W ∈

{(
0
1

)
,

(
1
0

)}
,

0 if W ∈
{(

0
0

)
,

(
1
1

)}
.

(3.5)

This does not change the unit-level assignment probabilities, which remains equal to 1/2
for both units, and so does the propensity score. �

EXAMPLE 3 A third, more complicated, assignment mechanism with two units is the
following. The unit with more to gain from the active treatment (using a coin toss in the
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36 A Classification of Assignment Mechanisms

case of a tie) is assigned to the treatment group, and the other to the control group. This
leads to

Pr(W|X, Y(0), Y(1)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Y2(1) − Y2(0) > Y1(1) − Y1(0) and W =
(

0
1

)
,

1 if Y2(1) − Y2(0) < Y1(1) − Y1(0) and W =
(

1
0

)
,

1/2 if Y2(1) − Y2(0) = Y1(1) − Y1(0) and W ∈
{(

0
1

)
,

(
1
0

)}
,

0 if W ∈
{(

0
0

)
,

(
1
1

)}
,

0 if Y2(1) − Y2(0) < Y1(1) − Y1(0) and W =
(

0
1

)
,

0 if Y2(1) − Y2(0) > Y1(1) − Y1(0) and W =
(

1
0

)
.

(3.6)

In this example the unit-level treatment probabilities pi(X, Y(0), Y(1)) are equal to zero,
one, or a half, depending whether the gain for unit i is smaller or larger than for the
other unit, or equal. Given that there are no covariates, the propensity score remains a
constant, equal to 1/2 in this case. This is a type of assignment mechanism that we often
rule out when attempting to infer causal effects. �

EXAMPLE 4 A sequential randomized experiment allows for dependence of the assign-
ment mechanism on the potential outcomes, thus violating some of the assumptions we
consider later. In this example, there are three units, and thus eight possible values for
W:

W ∈
⎧⎨⎩
⎛⎝0

0
0

⎞⎠ ,

⎛⎝0
0
1

⎞⎠ ,

⎛⎝0
1
0

⎞⎠ ,

⎛⎝0
1
1

⎞⎠ ,

⎛⎝1
0
0

⎞⎠ ,

⎛⎝1
0
1

⎞⎠ ,

⎛⎝1
1
0

⎞⎠ ,

⎛⎝1
1
1

⎞⎠⎫⎬⎭ .

Suppose there is a covariate Xi measuring the order in which the units entered the exper-
iment, Xi ∈ {1, 2, 3}. Without loss of generality, let us assume that Xi = i. For the first
unit, with Xi = 1, a fair coin toss determines the treatment. The second unit, with Xi = 2,
is assigned to the alternative treatment. Let the observed outcomes for the first and sec-
ond unit be Yobs

1 and Yobs
2 . The third unit, with Xi = 3, is assigned to the active or control

treatment that appears better, based on a comparison of observed outcomes by treatment
status for the first two units. If both treatments appear equally beneficial, the third unit is
assigned to the active treatment. For example, if W1 = 0, W2 = 1, and Yobs

1 > Yobs
2 , then

the third unit gets assigned to the control group; if W1 = 0, W2 = 1, and Yobs
1 ≤ Yobs

2 ,
the third units gets assigned to the treatment group; and similarly given the alternative
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3.4 Restrictions on the Assignment Mechanism 37

assignments for the first two units. Formally:

Pr(W|X, Y(0), Y(1), X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/2 if Y1(0) > Y2(1), and W =
⎛⎝0

1
0

⎞⎠ ,

1/2 if Y1(1) ≥ Y2(0), and W =
⎛⎝1

0
1

⎞⎠ ,

1/2 if Y1(0) ≤ Y2(1), and W =
⎛⎝0

1
1

⎞⎠ ,

1/2 if Y1(1) < Y2(0), and W =
⎛⎝1

0
0

⎞⎠ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

In this case the unit assignment probability is equal to 1/2 for the first two units,

p2(X, Y(0), Y(1)) = p2(X, Y(0), Y(1)) = 1/2,

and, for unit 3, equal to

p3(X, Y(0), Y(1)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if Y1(0) > Y2(1) and Y1(1) < Y2(0),

1 if Y1(1) ≥ Y2(0) and Y1(0) ≤ Y2(1),

1/2 otherwise.

Because the covariates identify the unit, the propensity score is equal to the unit assign-
ment probabilities. Thus, for x = 1 and x = 2 the propensity score is equal to 1/2. If
x = 3, the propensity score is equal to p3(X, Y(0), Y(1)). �

3.4 RESTRICTIONS ON THE ASSIGNMENT MECHANISM

Before classifying the various types of assignment mechanisms that are the basis of the
organization of this text, we present three general properties that assignment mecha-
nisms may satisfy. These properties restrict the dependence of the unit-level assignment
probabilities on values of covariates and potential outcomes for other units, or restrict
the range of values of the unit-level assignment probabilities, or restrict the dependence
of the assignment mechanism on potential outcomes.

The first property we consider is individualistic assignment, which limits the depen-
dence of the treatment assignment for unit i on the outcomes and assignments for
other units:
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38 A Classification of Assignment Mechanisms

Definition 3.4 (Individualistic Assignment)
An assignment mechanism Pr(W|X, Y(0), Y(1)) is individualistic if, for some function
q( · ) ∈ [0, 1],

pi(X, Y(0), Y(1)) = q(Xi, Yi(0), Yi(1)), for all i = 1, . . . , N,

and

Pr(W|X, Y(0), Y(1)) = c ·
N∏

i=1

q(Xi, Yi(0), Yi(1))Wi (1 − q(Xi, Yi(0), Yi(1)))1−Wi ,

for (W, X, Y(0), Y(1)) ∈ A, for some set A, and zero elsewhere (c is the constant that
ensures that the probabilities sum to unity).

Individualistic assignment is violated in sequential experiments such as Example 4.
Given individualistic assignment, the propensity score simplifies to:

e(x) = 1

Nx

∑
i:Xi=x

q(Xi, Yi(0), Yi(1)).

Next, we define probabilistic assignment, which requires every unit to have positive
probability of being assigned to treatment level 0 and to treatment level 1:

Definition 3.5 (Probabilistic Assignment)
An assignment mechanism Pr(W|X, Y(0), Y(1)) is probabilistic if the probability of
assignment to treatment for unit i is strictly between zero and one:

0 < pi(X, Y(0), Y(1)) < 1, for each possible X, Y(0), Y(1),

for all i = 1, . . . , N.

Note that this merely requires that every unit has the possibility of being assigned to the
active treatment and the possibility of being assigned to the control treatment.

The third property is a restriction on the dependence of the assignment mechanism on
potential outcomes:

Definition 3.6 (Unconfounded Assignment)
An assignment mechanism is unconfounded if it does not depend on the potential
outcomes:

Pr(W|X, Y(0), Y(1)) = Pr(W|X, Y′(0), Y′(1)),

for all W, X, Y(0), Y(1), Y′(0), and Y′(1).

If an assignment mechanism is unconfounded, we can drop the two potential out-
comes as arguments and write the assignment mechanism as Pr(W|X). The assignment
mechanisms in Examples 1 and 2 are, but those in in Examples 3 and 4 are not,
unconfounded.
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3.5 Assignment Mechanisms and Super-Populations 39

The combination of unconfoundedness and individualistic assignment plays a very
important role. In that case,

Pr(W|X, Y(0), Y(1)) = c ·
N∏

i=1

q(Xi)
Wi · (1 − e(Xi))

1−Wi . (3.8)

so that

e(x) = q(x),

so that the assignment mechanism is the product of the propensity scores. Note that,
under unconfoundedness, the propensity score is no longer just the average assignment
probability for units with covariate value Xi = x; it can also be interpreted as the unit-
level assignment probability for such units.

Given individualistic assignment, the combination of probabilistic and unconfounded
assignment is referred to as strongly ignorable treatment assignment (Rosenbaum and
Rubin, 1983a). More generally, ignorable treatment assignment refers to the weaker
restriction where the assignment mechanism can be written in terms of W, X, and Yobs

only, without dependence on Ymis (Rubin, 1978).

3.5 ASSIGNMENT MECHANISMS AND SUPER-POPULATIONS

In part of this text we view our sample of size N as a random sample from an infinite
super-population. In that case we employ slightly different formulations of the restric-
tions on the assignment mechanism. Sampling from the super-population generates a
joint sampling distribution on the quadruple of unit-level variables (Yi(0), Yi(1), Wi, Xi),
i = 1, . . . , N. More explicitly, we assume the (Yi(0), Yi(1), Wi, Xi) are independently and
identically distributed draws from a distribution indexed by a global parameter. We write
this in factored form as

fW|Y(0),Y(1),X(Wi|Yi(0), Yi(1), Xi, φ) · fY(0),Y(1)|X(Yi(0), Yi(1)|Xi, θ) · fX(Xi|ψ), (3.9)

where the parameters are in their respective parameter spaces, and the full parameter
vector is (φ, θ , ψ), where each of these components is generally a function of the global
parameter.

In this setting we define the propensity score as

Definition 3.7 (Super-Population Propensity Score)
The propensity score at x is the population average unit assignment probability for units
with Xi = x,

e(x) = ESP
[

fW|Y(0),Y(1),X(1|Yi(0), Yi(1), Xi, φ)fY(0),Y(1)|X(Yi(0), Yi(1)|Xi, θ)
∣∣Xi = x

]
,

for all x in the support of Xi; e(x) is here a function of φ, a dependence that we usually
suppress notationally.
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40 A Classification of Assignment Mechanisms

The “SP” subscript on the expectations operator indicates that the expectation is taken
over the distribution generated by random sampling. In this case the expectation is taken
over the potential outcomes (Yi(0), Yi(1)). By iterated expectations the propensity score
in the super-population setting is also equal to Pr(Wi = 1|Xi = x, φ, θ) where the
probability is taken both over the assignment mechanism and over the random sampling.

Note that with our definition of super-populations the assignment mechanism is
automatically individualistic (of course, given (φ, θ)).

Definition 3.8 (Super-Population Probabilistic Assignment)
An assignment mechanism is super-population probabilistic if the probability of assign-
ment to treatment for unit i is strictly between zero and one:

0 < fW|Y(0),Y(1),X(1|Yi(0), Yi(1), Xi, φ) < 1, for each possible Xi, Yi(0), Yi(1).

Definition 3.9 (Super-Population Unconfounded Assignment)
An assignment mechanism is super-population unconfounded if it does not depend on
the potential outcomes:

fW|Y(0),Y(1),X(w|y0, y1, x, φ) = fW|Y(0),Y(1),X(w|y′
0, y′

1, x, φ),

for all y0, y1, x, y′
0, y′

1, φ, and for w = 0, 1.

3.6 RANDOMIZED EXPERIMENTS

Part II of this text deals with the inferentially most straightforward class of assignment
mechanisms, randomized assignment. Randomized experimental designs have tradition-
ally been viewed as the most credible basis for causal inference, as reflected in the typical
reliance of the U.S. Food and Drug Administration on such experiments in its approval
process for pharmaceutical treatments.

Definition 3.10 (Randomized Experiment)
A randomized experiment is an assignment mechanism that

(i) is probabilistic, and
(ii) has a known functional form that is controlled by the researcher.

In Part II of this text we will be concerned with a special case – what we call classical
randomized experiments:

Definition 3.11 (Classical Randomized Experiment)
A classical randomized experiment is a randomized experiment with an assignment
mechanism that is

(i) individualistic, and
(ii) unconfounded.

The definition of a classical randomized experiment rules out sequential experiments as
in Example 4. In sequential experiments, the assignment for units assigned in a later
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stage of the experiment generally depends on observed outcomes for units assigned
earlier in the experiment.

A leading case of a classical randomized experiment is a completely randomized
experiment, where, a priori, the number of treated units, Nt, is fixed (and thus the num-
ber of control units Nc = N −Nt is fixed as well). In such a design, Nt units are randomly
selected, from a population of N units, to receive the active treatment, with the remaining
Nc assigned to the control group. In this case, each unit has unit assignment probability
q = Nt/N, and the assignment mechanism equals

Pr(W|X, Y(0), Y(1)) =

⎧⎪⎨⎪⎩1

/(
N
Nt

)
if
∑N

i=1 Wi = Nt,

0 otherwise,

where the number of distinct values of the assignment vector with Nt units out of N
assigned to the active treatment is(

N
Nt

)
= N!

Nt! · (N − Nt)!
, with J! = J(J − 1) . . . 1.

Other prominent examples of classical randomized experiments include stratified ran-
domized experiments and paired randomized experiments, discussed in Chapters 9
and 10.

3.7 OBSERVATIONAL STUDIES: REGULAR ASSIGNMENT
MECHANISMS

In Parts III and IV of this text, we discuss cases where the exact assignment probabilities
may be unknown to the researcher, but the researcher still has substantial informa-
tion concerning the assignment mechanism. For instance, a leading case is where the
researcher knows the set of variables that enters into the assignment mechanism but does
not know the functional form of the dependence. Such information will generally come
from subject-matter knowledge. For example, medical decisions in some situations are
made solely using patients’ medical records, but precisely how may be unknown. In gen-
eral we refer to designs with unknown assignment mechanisms as observational studies:

Definition 3.12 (Observational Study)
An assignment mechanism corresponds to an observational study if the functional form
of the assignment mechanism is unknown.

The special case of an assignment mechanism that is the focus of Part III of the book is
a regular assignment mechanism:

Definition 3.13 (Regular Assignment Mechanism)
An assignment mechanism is regular if

(i) the assignment mechanism is individualistic,
(ii) the assignment mechanism is probabilistic, and

(iii) the assignment mechanism is unconfounded.
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If, in addition, the functional form of a regular assignment mechanism is known, the
assignment mechanism corresponds to a classical randomized experiment. If the func-
tional form is not known, the assignment mechanism corresponds to an observational
study with a regular assignment mechanism.

In Part III of this book we focus on the design stage of studies where the assumption
of a regular assignment mechanism is viewed as plausible. In this design stage we focus
on the data on treatment assignment and pre-treatment variables only, without seeing the
outcome data. The concern at this stage is balance in the covariate distributions between
treated and control groups. In completely and stratified randomized experiments, balance
is guaranteed by design, but in observational studies this needs to be done by special
analyses. We assess balance, and in cases where initially there is insufficient balance, we
develop methods for improving balance.

In Part IV we discuss methods of analysis for causal inference with regular assign-
ment mechanisms in some detail. Even if in many cases it may appear too strong to
assume that an assignment mechanism is regular, we will argue that, in practice, it is
a very important starting point for many studies. There are two main reasons for this.
The first is that in many well-designed observational studies, researchers have attempted
to record all the relevant covariates, that is, all the variables that may be associated
with both outcomes and assignment to treatment. If they have been successful in this
endeavor, or at least approximately so, a regular assignment mechanism may be a rea-
sonable approximation to the true assignment mechanism. The second reason is that
specific alternatives to regular assignment mechanisms are typically even less credible.
Under a regular assignment mechanism, it will be sufficient to adjust appropriately for
differences between treated and control units’ covariate values to draw valid causal infer-
ences. Any alternative method involves causal interpretations of comparisons of units
with different treatments who also are observed to differ systematically in their values
for covariates. It is relatively uncommon to find a convincing argument in support of such
alternatives, although there are some notable exceptions, such as instrumental variables
analyses discussed in Part VI of the book. More details of these arguments are presented
in Chapter 12.

3.8 OBSERVATIONAL STUDIES: IRREGULAR ASSIGNMENT
MECHANISMS

In Part VI of this book, we discuss another class of assignment mechanisms. We focus
on settings where assignment to treatment may differ for some units from the receipt
of treatment. We assume that assignment to treatment itself is unconfounded, but allow
receipt of treatment to be confounded. This class of assignment mechanisms includes
noncompliance in randomized experiments and sometimes utilizes instrumental vari-
ables analyses. Often in these designs, the receipt of treatment can be viewed as “latently
regular” – that is, it would be regular given some additional covariates that are not fully
observed. To conduct inference in such settings, it is often useful to invoke additional
conditions, in particular exclusion restrictions, which rule out the presence of particular
causal effects.
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The remainder of this text provides more detailed discussion of methods of causal
inference given each of these types of assignment mechanisms. In the next part of the
book, Chapters 4–11, we start with classical randomized experiments.

3.9 CONCLUSION

This chapter presented the taxonomy of assignment mechanisms that serves as the orga-
nizing principle for this text. Using three restrictions on the assignment mechanism –
individualistic assignment, probabilistic assignment, and unconfoundedness – we define
regular assignment mechanisms and the special case of classical randomized experi-
ments. In the next part of the book, we study classical randomized experiments, followed
in Parts III and IV by the study of observational studies with regular assignment mecha-
nisms. In Parts V and VI of the text we analyze some additional assignment mechanisms
where receipt of treatment is confounded.

NOTES

Of the restrictions on assignment mechanisms we discuss in the current chapter, the first
one, individualistic assignment, is often made implicitly, but the term is new. The notion
of probabilistic assignment is often stated formally, although it is rarely given a formal
label. The term unconfoundedness was coined by Rubin (1990a). It is sometimes referred
to as the conditional independence assumption (Lechner, 2001; Angrist and Pischke,
2009). In the econometrics literature it is also closely related to the notion of exogene-
ity (Manski, Sandefur, McLanahan, and Powers, 1992), although formal definitions of
exogeneity do not coincide with unconfoundedness (see Imbens, 2004, for some discus-
sion). The combination of probabilistic assignment and unconfoundedness is referred to
as Strong Ignorability or Strongly Ignorable Treatment Assignment by Rosenbaum and
Rubin (1984). There is a close link between some of the assumptions used in the con-
text of causal inference and the terminology in missing data problems. In the missing
data literature, strong ignorability is closely linked with Missing at Random missing-
ness mechanisms (Rubin, 1976c; Little and Rubin, 2002; Frumento, Mealli, Pacini, and
Rubin, 2012).

Instrumental variables methods originate in the econometrics literature and go back
to the 1920s and 1940s (P. Wright, 1928; S. Wright 1921, 1923; Tinbergen, 1928;
Haavelmo, 1943). For a historical perspective, see Stock and Trebbi (2003) and Imbens
(2014). For modern approaches see Imbens and Angrist (1994), and Angrist, Imbens,
and Rubin (1996). For textbook discussions, see Wooldridge (2010) and Angrist and
Pischke (2008).

Some methods for assignment mechanisms not covered in this edition of the book
include Principal Stratification, Regression Discontinuity Designs, Difference In Dif-
ferences methods, and case-control designs. The notion of Principal Stratification
generalizes the binary-treatment version of instrumental variables. It was introduced
by Frangakis and Rubin (2002). Regression discontinuity designs originate in the
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psychology literature (Thistlewaite and Campbell, 1960). See for a historical overview
Cook (2008), and for recent surveys Imbens and Lemieux (2008) and Lee and Lemieux
(2010). Difference in Differences (DID) methods are another set of methods intended
for irregular designs. DID methods are widely used in the econometric literature.
See Angrist and Pischke (2008) for a general discussion and references. Case-control
designs, more accurately called case-noncase designs, are commonly used in epi-
demiology, especially when looking for exposures that lead to rare diseases (i.e.,
the cases).
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