
CHAPTER 2

Causal Inference and Experimentation

Although the logic of experimentation is for the most part intuitive, researchers
can run into trouble if they lack a firm grasp of the key assumptions that must
be met in order for experiments to provide reliable assessments of cause and

effect. This point applies in particular to field experimental researchers, who must
frequently make real-time decisions about research design. Failure to understand
core statistical principles and their practical implications may cause researchers to
squander resources and experimental opportunities. It is wise, therefore, to invest
time studying the formal statistical properties of experiments before launching a
research project.

This chapter introduces a system of notation that will be used throughout the
book. By depicting the outcomes that potentially manifest themselves depending on
whether the treatment is administered to each unit, the notation clarifies a number
of key concepts, such as the idea of a treatment effect/This notational system is then
used to shed light on the conditions under which experiments provide persuasive evi-
dence about cause and effect. The chapter culminates with a list of core assumptions
and what they imply for experimental design. The advantage of working methodi-
cally from core principles is that a long list of design-related admonitions flows from
a relatively compact set of ideas that can be stored in working memory.

2.1 Potential Outcomes

Suppose we seek to gauge the causal effect of a treatment. For concreteness, suppose
we wish to study the budgetary consequences of having women, rather than men,
head Indian village councils, which govern rural areas in West Bengal and Rajasthan.1

1 See Chattopadhyay and Dufio 2004.
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What you will learn from this chapter:

1. The system of notation used to describe potential outcomes.

2. Definitions of core terms: average treatment effect, expectation, random
assignment, and unbiasedness.

3. Assumptions that must be met in order for experiments to produce unbi-
ased estimates of the average treatment effect.

Students of legislative politics have argued that women bring different policy priori-
ties to the budgetary process in developing countries, emphasizing health issues such
as providing clean drinking water. Leave aside for the time being the question of how
this topic might be studied using randomly assigned treatments. For the moment,
simply assume that each village either receives the treatment (a woman serves as vil-
lage council head) or remains untreated (with its village council headed by a man).
For each village, we also observe the share of the local council budget that is allocated
to providing clean drinking water. To summarize, we observe the treatment (whether
the village head is a woman or not) and the outcome (what share of the budget goes
to a policy issue of special importance to women).

What we do not observe is how the budget in each village headed by a man would
have been allocated if it had been headed by a woman, and vice versa. Although we do
not observe these counterfactual outcomes, we can nevertheless imagine them. Tak-
ing this mental exercise one step further, we might imagine that each village has two
potential outcomes: the budget it would enact if headed by a woman and the budget
it would enact if headed by a man. The gender of the village head determines which
potential budget we observe. The other budget remains imaginary or counterfactual.

Table 2,1 provides a stylized example of seven villages in order to introduce the
notation that we will use throughout the book. The villages constitute the subjects in
this experiment. Each subject is identified by a subscript i, which ranges from 1 to 7.
The third village on the list, for example, would be designated as i = 3. The table
imagines what would happen under two' different scenarios. Let 7(1) be the out-
come if village i is exposed to the treatment (a woman as village head), and let 7(0)
be the outcome if this village is not exposed to the treatment. For example, Village
3 allocates 30% of its budget to water sanitation if headed by a woman but only 20%
if headed by a man, so, 73(1) = 30%, and 73(0) = 20%. These are called potential
outcomes because they describe what would happen if a treatment were or were not
administered.

For purposes of this example, we assume that each village has just two potential
outcomes, depending on whether it receives the treatment; villages are assumed to be
unaffected by the treatments that other villages receive. In section 2.7, we spell out

TABLE 2.1

Illustration of potential outcomes for local budgets when village
council heads are women or men. (Entries are shares of local
budgets allocated to water sanitation.)

Village i

Village 1

Village 2

Villages

Village 4

: Villages

Village 6

Village 7

Average

KIO)
Budget share if
village head is

male

10

15

20

20

10

15

15

15

Y$]
Budget share if
village head is

female

15

15

30

15

20

15

30

20

r,
Treatment effect

5

0

10

-5

10

0

15

5

more precisely the assumptions that underlie the model of potential outcomes and
discuss complications that arise when subjects are affected by the treatments that
other subjects receive.

2.2 Average Treatment Effects

For each village, the causal effect of the treatment (T.) is defined as the difference

between two potential outcomes:

Tj = 7(1) - 7(0). 12.1)

In other words, the treatment effect for each village is the difference between two

potential states of the world, one in which the village receives the treatment and

another in which it does not. For Village 3, this causal effect is 30 - 20 = 10.

The empirical challenge that researchers typically face when observing outcomes

is that at any given time one can observe 7(1) or 7(0) but not both. (Bear in mind

that the only reason we are able to see both potential outcomes for each village in

Table 2.1 is that this is a hypothetical example!) Building on the notational system

introduced above, we define 7 as the observed outcome in each village and d. as the

observed treatment that is delivered in each village. In this case, 7 is the observed

share of the budget allocated to water sanitation, and d equals 1 when a woman is

village head and 0 otherwise.
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Potential Outcomes Notation

In this system of notation, the subscript z refers to subjects 1 through N.

The variable d. indicates whether the zth subject is treated: d. = 1 means
the zth subject receives the treatment, and d. = 0 means the z'th subject does
not receive the treatment. It is assumed that d. is observed for every subject.

Y(l) is the potential outcome if the zth subject were treated. Y.(0) is the
potential outcome if the z'th subject were not treated. In general, potential out-
comes may be written Y.(d), where d indexes the treatment. These potential
outcomes are fixed attributes of each subject and represent the outcome that
would be observed hypothetically if that subject were treated or untreated.

A schedule of potential outcomes refers to a comprehensive list of poten-
tial outcomes for all subjects. The rows of this schedule are indexed by i, and
the columns are indexed by d. For example, in Table 2.1 the Y.(0) and Y(l)
potential outcomes for the fifth subject may be found in adjacent columns of
the fifth row.

The connection between the observed outcome Y. and the underlying
potential outcomes is given by the equation Y. = d Y ( l ) + (1 - d.)Y.(O). This
equation indicates that the Y.(l) are observed for subjects who are treated, and
the Y(0) are observed for subjects who are not treated. For any given subject,
we observe either Y(l) or Y(0), never both.

It is sometimes useful to refer to potential outcomes for a subset of all sub-
jects. Expressions of the form Y.(-) X = x denote potential outcomes when
the condition X = x holds. For example, Y(0) \dt — 1 refers to the untreated
potential outcome for a subject who actually receives the treatment.

Because we often want to know about the statistical properties of a hypo-
thetical random assignment, we distinguish between d, the treatment that a
given subject receives (a variable that one observes in an actual dataset), and
D., the treatment that could be administered hypothetically. D. is a random
variable, and the z'th subject might be treated in one hypothetical study and
not in another. For example, Y.(l) \D.= I refers to the treated potential out-
come for a subject who would be treated under some hypothetical allocation
of treatments.
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The budget that we observe in each village may be summarized using the follow-

ing expression:

Y = d.Y(l) + (1 - d;)Y(0). 12.2]

Because d. is either 0 or 1, one of the terms on the right side of the equals sign will
always be zero. We observe the potential outcome that results from treatment, Y(l), if
the treatment is administered (<?. = 1). If the treatment is not administered (d. = 0),
we observe the potential outcome that results when no treatment occurs, Y.(0).

The average treatment effect, or ATE, is defined as the sum of the T. divided by N,

the number of subjects:

ATE - 12.3)

An equivalent way to obtain the average treatment effect is to subtract the average
value of Y(0) from the average value of Y.(l):

N^i-

The average treatment effect is an extremely important concept. Villages may have
different T., but the ATE indicates how outcomes would change on average if every
village were to go from untreated (male village council head) to treated (female vil-
lage council head).

From the rightmost column of Table 2.1, we can calculate the ATE for the seven
villages. The average treatment effect in this example is 5 percentage points: if all
villages were headed by men, they would on average spend 15% of their budgets on
water sanitation, whereas if all villages were headed by women, this figure would rise
to 20%.

Definition: Average Treatment Effect

The average treatment effect (ATE) is the sum of the subject-level treatment
effects, Y(l) - Y.(0), divided by the total number of subjects. An equivalent
way to express the ATE is to say that it equals /uy(1) - ju.r(0), where /u,ni) is the
average value of Y.(l) for all subjects and /j,y(0) is the average value of Y.(0) for
all subjects.
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2.3 Random Sampling and Expectations

Suppose that instead of calculating the average potential outcome for all villages,
we drew a random sample of villages and calculated the average among the villages we
sampled. By random sample, we mean a selection procedure in which v villages are
selected from the list of N villages, and every possible set of v villages is equally likely
to be selected. For example, if we select one village at random from a list of seven vil-
lages, seven possible samples are equally likely. If we select three villages at random
from a list of seven villages,

N! __ 7! _ 7X6X5X4X3X2X1

v!(N-v)! ~ 3!4! ~ (3X2X1)(4X3X2X1)
= 35 (2.5!

possible samples are equally likely. If potential outcomes vary from one village to the
next, the average potential outcome in the villages we sample will vary, depending on
which of the possible samples we happen to select. The sample average may be char-
acterized as a random variable, a quantity that varies from sample to sample.

The term expected value refers to the average outcome of a random variable. (See
Box 2.3.) In our example, the random variable is the number we obtain when we
sample villages at random and calculate their average outcome. Recall from introduc-
tory statistics that under random sampling, the expected value of a sample average
is equal to the average of the population from which the sample is drawn.2 This prin-
ciple may be illustrated using the population of villages depicted in Table 2.1. Recall
that the average value of Y.(Q) among all villages in Table 2.1 is 15. Suppose we sample
two villages at random from the list of seven villages and calculate the average value
of 7.(0) for the two selected villages. There are

N\!

v!(N-v)! 2!5!
= 21 [2.6]

possible ways of sampling two villages at random from a list of seven, and each sam-
ple is equally likely to be drawn. Any given sample of two villages might contain
an average value of 7(0) that is higher or lower than the true average of 15, but the
expected value refers to what we would obtain on average if .we were to examine all
21 possible samples, for each one calculating the average value of Y.(0):

{10,12.5,12.5,12.5,12.5,12.5,12.5,15,15,15,15,15,15,15,
17.5,17.5,17.5,17.5,17.5,17.5, 20}. (2.7)

2 The easiest way to see the intuition behind this principle is to consider the case in which we randomly
sample just one village. Each village is equally likely to be sampled. The average over all seven possible
samples is identical to the average for the entire population of seven villages. This logic generalizes to
samples where v > 1 because each village appears in exactly v/7 of all possible samples.

The expectation of a discrete random variable X is denned as

E[X\ SxPr[X = x],

where Pr[X = x] denotes the probability that X takes on the value x, and

where the summation is taken over all possible values of x.

For example, what is the expected value of a randomly selected value of T.

from Table 2.1?

E[T] = 2>Pr[T, = T]

Properties of Expectations

The expectation of the constant a is itself: E[a] = a.

For a random variable X and constants a and (3,E [a + f3X] = a + @E[X].

The expectation of a sum of two random variables, X and Y, is the sum of

their expectations: E[X + Y] = E[X] + E[Y].

The expectation of the product of two random variables, X and Y,
is the product of their expectations plus the covariance between them:

E[XY] = E[X}E[Y] + E((X - E[X})(Y -

The average of these 21 numbers is 15. In other words, the expected value of the aver-

age Y.(0) obtained from a random sample of two villages is 15.
The concept of expectations plays an important role in the discussion that fol-

lows. Because we will refer to expectations so often, a bit more notation is helpful.
The notation E[X] refers to the expectation of a random variable X. (See Box 2.3.)
The expression "the expected value of Y.(0) when one subject is sampled at random"
will be written compactly as E[ Y.(0)]. When a term like Y.(0) appears in conjunction
with an expectations operator, it should be read not as the value of Y.(0) for subject
i but instead as a random variable that is equal to the value of Y(0) for a randomly
selected subject. When the expression E[Y.(0)] is applied to values in Table 2.1, the
random variable is the random selection of a Y.(0) from the list of all Y.(0); since
there are seven possible random selections, the average of which is 15, it follows that

£[Y(0)] = 15.
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Sometimes attention is focused on the expected value of a random variable
within a subgroup. Conditional expectations refer to subgroup averages. In terms
of notation, the logical conditions following the | symbol indicate the criteria that
define the subgroup. For example, the expression "the expectation of Y(l) when
one village is selected at random from those villages that were treated" is written
jE[Y(l) d. = 1], The idea of a conditional expectation is straightforward when
working with quantities that are in principle observable. More mind-bending are
expressions like E[Y.(1) d. = 0], which denotes "the expectation of Y.(l) when one
village is selected at random from those villages that were not treated." In the course
of conducting research, we will never actually see Y.(l) for an untreated village, nor
will we see Y.(0) for a treated village. These potential outcomes can be imagined but
not observed.

One special type of conditional expectation arises when the subgroup is defined
by the outcome of a random process. In that case, the conditional expectation may
vary depending on which subjects happened to meet the condition in any particular
realization of the random process. For example, suppose that a random process,
such as a coin flip, determines which subjects are treated. For a given treatment
assignment d., we could calculate E[Y.(1) | d. = 0], but this expectation might have
been different had the coin flips come out differently. Suppose we want to know
the expected conditional expectation, or how the conditional expectation would
come out, on average, across all possible ways that d. could have been allocated. Let
D. be a random variable that indicates whether each subject would be treated in a
hypothetical experiment. The conditional expectation E[Y.(1) D. = 0] is calculated
by considering all possible realizations of D. (all the possible ways that N coins could
have been flipped) in order to form the joint probability distribution function for
Y.(l) and D.. As long as we know the joint probability of observing each paired set
of values {7(1), D}, we can calculate the conditional expectation using the formula
in Box 2.4.3

With this basic system of notation in place, we may now describe the connection
between expected potential outcomes and the average treatment effect (ATE):

- Y(0)] = - JS[Y(0)]

1 x

-ATE. (2.8)

3 The notation B[7.(l) |D. = 0] maybe regarded as shorthand for E[E[Y:(1) \d. = 0, d]}, where d refers
to a vector of treatment assignments and d. refers its ith element. Given d, we may calculate the probability
distribution function for all (7(1), d} pairs and the expectation given this set of assignments. Then we may
take the expectation of this expected value by summing over all possible d vectors.
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Definition: Conditional Expectation

For discrete random variables Y and X, the conditional expectation of Y given

that X takes on the value x is
Pr[Y = y,X = x]

E[Y\X = x} = = y\X = x] =

where Pr[Y = y, X = x] denotes the joint probability of Y = y and X = x,

and where the summation is taken over all possible values of y.

For example, in Table 2.1 what is the conditional expectation of a randomly
selected value of T., for villages where Y.(0) > 10? This question requires us
to describe the joint probability distribution function for the variables T. and
Y.(0) so that we can calculate Pr[r. = T, Y.(0) > 10]. Table 2.1 indicates that
the {T, Y(0)} pair {0, 15} occurs with probability 2/7, while the other pairs
{5, 10}, {10, 20}, {-5, 20}, {10, 10}, and {15, 15} each occur with probability 1/7.
The marginal distribution of Y.(0) reveals that 5 of the 7 Y.(0) are greater than 10,

soPr[Y.(0) > 10] = 5/7.

Pr[T, = T,Y.(0)>10]
' -E(T, Y(0) > 10] Pr[Y.(0)>10]

2 Q

- (0)^ + (5)j -

In order to illustrate the idea of a conditional expectation when condition-
ing on the outcome of a random process, suppose we randomly assign one
of the observations in Table 2.1 to treatment (D. = 1) and the remaining six
observations to control (D. = 0). If each of the seven possible assignments
occurs with probability 1/7, what is the expected value of a randomly selected
T. given that D. = 1? Again, we start with the joint probability density func-
tion for T. and D. and consider all possible pairings of these two variables' val-
ues. The {T, D} pairings {—5,1}, {5,1}, and {15,1} occur with probability 1/49,
while the pairings {0,1} and {10,1} occur with probability 2/49; the remaining
{T, D} pairings are instances in which T is paired with 0. The marginal distribu-

tion Pr[D; = 1] = 3(1/49) + 2(2/49) = 1/7.

Pr[-r. = T, D. - 1]
E [ T , | D ( = 1 ] = 2>-1 '

C-5)f
7

— = 5.
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The first line of equation (2.8) expresses the fact that when a village is selected at
random from the list of villages, its expected treatment effect is equal to the differ-
ence between the expected value of a randomly selected treated potential outcome
and the expected value of a randomly selected untreated potential outcome. The
second equality in equation (2.8) indicates that the expected value of a randomly
selected 7(1) equals the average of all 7(1) values, and that the expected value of
a randomly selected 7(0) equals the average of all 7(0) values. The third equality
reflects the fact that the difference between the two averages in the second line of
equation (2.8) can be expressed as the average difference in potential outcomes. The
final equality notes that the average difference in potential outcomes is the defini-
tion of the average treatment effect. In sum, the difference in expectations equals
the difference in average potential outcomes for the entire list of villages, or the ATE.4

This relationship is apparent from the schedule of potential outcomes in Table 2.1.
The column of numbers representing the treatment effect (T.) is, on average, 5. If we
were to select villages at random from this list, we would expect their average treat-
ment effect to be 5. We get the same result if we subtract the expected value of a ran-
domly selected 7(0) from the expected value of a randomly selected 7(1).

2.4 Random Assignment and Unbiased Inference

The challenge of estimating the average treatment effect is that at a given point in time
each village is either treated or not: either 7(1) or 7(0) is observed, but not both. To
illustrate the problem, Table 2.2 shows what outcomes would be observed if Village 1
and Village 7 were treated, while the remaining villages were not. We observe 7(1)
for Villages 1 and 7 but not 7(0). For Villages 2, 3, 4, 5, and 6, we observe 7(0) but not
7(1). The unobserved or "missing" values in Table 2.2 are indicated with a "?".

4 The notation used here is just one way to explicate the link between expectations and the ATE. Samii and
Aronow (2012) suggest an alternative formalization. Their model envisions a finite population U consist-
ing of units; in 1, 2, . . . , N, each of which has an associated triple (y.(\), JK/0), D'.) such that v.(l) and y (0)
are fixed potential outcomes and D'. is a random variable indicating the treatment status of unit;. Reassign
a random index ordering i in 1, 2, . . . , N. Then, for an arbitrary unit i, there exists an associated triple of
random variables (Y.(l), Y.(0), D) such that the random variable Y. = D.y.(l) + (1 - D.)y.(O). It follows
that for equation (2.8): ' ' '

,7/D - jl^CO) = ATE.

Statistical operators such as expectations or independence refer to random variables associated with an
arbitrary index i. Looking ahead to later chapters, one might expand this system to include other unit-level
attributes, such as covariates or missingness, by attaching them to the triple indexed by; before reassigning
the ordering. ' °
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TABLE 2.2

Illustration of observed outcomes for local budgets when two village
councils are headed by women.

Village i

Village 1

Village 2

Villages

Village 4

Village 5

Village 6

Village 7

Estimated average

y.(o)
Budget share if
village head is

male

?

15

20

20

10

15

" !jj ?

16

Ktl)
Budget share if
village head is

female

15

?

?

?

?

?

30

22.5

T!
Treatment effect

?

?

?

?

?

?

?

6.5

based on observed data

Note: The observed outcomes in this table are based on the potential outcomes listed in Table 2.1.

Random assignment addresses the "missing data" problem by creating two
groups of observations that are, in expectation, identical prior to application of the
treatment. When treatments are allocated randomly, the treatment group is a random
sample of all villages, and therefore the expected potential outcomes among villages
in the treatment group are identical to the average potential outcomes among all villages.
The same is true for villages in the control group. The control group's expected poten-
tial outcomes are also identical to the average potential outcomes among all villages.
Therefore, in expectation, the treatment groups potential outcomes are the same as
the control group's. Although any given random allocation of villages to treatment
and control groups may produce groups of villages that have different average poten-
tial outcomes, this procedure is fair in the sense that it does not tend to give one
group a higher set of potential outcomes than the other.

As Chattopadhyay and Duflo point out, random assignment is in fact used in
rural India to assign women to head one-third of the local village councils.5 Ordi-
narily, men would head the village councils, but Indian law mandates that selected

5 Chattopadhyay and Duflo 2004. A lottery is used to assign council positions to women in Rajasthan.
In West Bengal, a near-random assignment procedure is used whereby villagers are assigned according to
their serial numbers.
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villages install a female representative as head of the council. For purposes of illustra-
tion, suppose that our collection of seven villages were subject to this law, and that
two villages will be randomly assigned female council heads. Consider the statistical
implications of this arrangement. This random assignment procedure implies that
every village has the same probability of receiving the treatment; assignment bears no
systematic relationship to villages' observed or unobserved attributes.

Let's take a closer look at the formal implications of this form of random assign-
ment. When villages are assigned such that every village has the same probability
of receiving the treatment, the villages that are randomly chosen for treatment are
a random subset of the entire set of villages. Therefore, the expected Y(l) potential
outcome among treated villages is the same as the expected Y(l) potential outcome
for the entire set of villages:

(2.91

Two Commonly Used Forms of Random Assignment

Random assignment refers to a procedure that allocates treatments with
known probabilities that are greater than zero and less than one.

The most basic forms of random assignment allocate treatments such that
every subject has the same probability of being treated. Let N be the number of
subjects, and let m be the number of subjects who are assigned to the treatment
group. Assume that N and m are integers such that 0 < m < N. Simple ran-
dom assignment refers to a procedure whereby each subject is allocated to the
treatment group with probability m/N. Complete random assignment refers
to a procedure that allocates exactly m units to treatment.

Under simple or complete random assignment, the probability of being
assigned to the treatment group is identical for all subjects; therefore treatment
status is statistically independent of the subjects' potential outcomes and their
background attributes (X}:

Yl(0),Yl(l),XLDt,

where the symbol 1 means "is independent of." For example, if a die roll is
used to assign subjects to treatment with probability 1/6, knowing whether
a subject is treated provides no information about the subject's potential out-
comes or background attributes. Therefore, the expected value of Y.(0), Y.(l),
and X is the same in treatment and control groups.
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When we randomly select villages into the treatment group, the villages we leave
behind for the control group are also a random sample of all villages. The expected
Y.(l) in the control group (D. = 0) is therefore equal to the expected Y(l) for the

entire set of villages:

E[Y(1) D. = 0] = E[Y f(l)]. [2.10]

Putting equations (2.9) and (2.10) together, we see that under random assignment the
treatment and control groups have the same expected potential outcome:

E ( Y . ( l ) \ D . = 1] = E[Y,(1) |D,= 0]. (2.11)

Equation (2.11) also underscores the distinction between realized and unrealized
potential outcomes. On the left side of the equation is the expected treated potential
outcome among villages that receive the treatment. The treatment causes this poten-
tial outcome to become observable. On the right side of the equation is the expected
treated potential outcome among villages that do not receive the treatment. Here, the
lack of treatment means that the treated potential outcome remains unobserved for

these subjects.
The same logic applies to the control group. Villages that do not receive the treat-

ment (D. = 0) have the same expected untreated potential outcome Y(0) that the

treatment group (D. = 1) would have if it were untreated:

E ( Y ( 0 ) \ D j = 0] = E[Y(Q)\Di = 1] = E[Y.(0)]. (2.121

Equations (2.11) and (2.12) follow from random assignment: D. conveys no informa-
tion whatsoever about the potential values of Y(l) or Y(0). The randomly assigned
values of D. determine which value of Y we actually observe, but they are nevertheless
statistically independent of the potential outcomes Y.(l) and Y.(0). (See Box 2.5 for

discussion of the term independence.)
When treatments are assigned randomly, we may rearrange equations (2.8),

(2.11), and (2.12) in order to express the average treatment effect as

ATE = E[Y,(1)|D, = 1] - E[Y.(0)\D. = 0]. 12.13]

This equation suggests an empirical strategy for estimating the average treatment
effect. The terms E[Y.(1) | (D. = 1)] and E[ Y.(0) (D. = 0)] may be estimated using
experimental data. We do not observe the Y(l) potential outcomes for all observa-
tions, but we do observe them for the random sample of observations that receive
the treatment. Similarly, we do not observe the Y.(0) potential outcomes for all
observations, but we do observe them for the random sample of observations in the
control group. If we want to estimate the average treatment effect, equation (2.13)
suggests that we should take the difference between two sample means: the average



34 CAUSAL INFERENCE AND EXPERIMENTATION
CAUSAL I N F E R E N C E AND EXPERIMENTATION 35

outcome in the treatment group minus the average outcome in the control group.
Ideas that enable researchers to use observable quantities (e.g., sample averages) to
reveal parameters of interest (e.g., average treatment effects) are termed identification
strategies.

Statistical procedures used to make guesses about parameters such as the aver-
age treatment effect are called estimators. In this example, the estimator is very sim-
ple, just a difference between two sample averages. Before applying an estimator to
actual data, a researcher should reflect on its statistical properties. One especially
important property is unbiasedness. An estimator is unbiased if it generates the right
answer, on average. In other words, if the experiment were replicated an infinite
number of times under identical conditions, the average estimate would equal the
true parameter. Some guesses may be too high and others too low, but the average
guess will be correct. In practice, we will not be able to perform an infinite number
of experiments. In fact, we might just perform one experiment and leave it at that.
Nevertheless, in theory we can analyze the properties of our estimation procedure
to see whether, on average, it recovers the right answer. (In the next chapter, we
consider another property of estimators: how precisely they estimate the parameter
of interest.)

In sum, when treatments are administered using a procedure that gives every
subject the same probability of being treated, potential outcomes are independent of
the treatments that subjects receive. This property suggests an identification strategy
for estimating average treatment effects using experimental data.

The remaining task is to demonstrate that the proposed estimator—the differ-
ence between the average outcome in the treatment group and the average outcome
in the control group—is an unbiased estimator of the ATE when all subjects have
the same probability of being treated. The proof is straightforward. Because the
units assigned to the control group are a random sample of all units, the average of
the control group outcomes is an unbiased estimator of the average value of Y.(0)

Definition: Estimator and Estimate

An estimator is a procedure or formula for generating guesses about param-
eters such as the average treatment effect. The guess that an estimator generates
based on a particular experiment is called an estimate. Estimates are denoted
using a "hat" notation. The estimate of the parameter 9 is written 9.

among all units. The same goes for the treatment group: the average outcome among
units that receive the treatment is an unbiased estimator of the average value of 7.(1)
among all units. Formally, if we randomly shuffle the villages and place the first m
subjects in the treatment group and the remaining N - m subjects in the control
group, we can analyze the expected, or average, outcome over all possible random

assignments:

Average outcome Average outcome
among treated among untreated

units units

'

m
2« + l*i~

N - m
r2i"X

m

£[yj + E[Y2] +••• + E[YJ

yN YZjm+l1!

N - m

E(YmJ + E[Ym+2] + • • • + E[YN]

N - m

= E[y,(l)|D,= 1] -E[Y,(0) D, = 0]

= E[Y,(1)] ~ E[Yt(0)] = £[T.] = ATE. 12. Ul

Equation (2.14) conveys a simple but extremely useful idea. When units are randomly
assigned, a comparison of average outcomes in treatment and control groups (the
so-called difference-in-means estimator) is an unbiased estimator of the average treat-
ment effect.

Definition: Unbiased Estimator

An estimator is unbiased if the expected value of the estimates it produces is
equal to the true parameter of interest. Call 9 the parameter we seek to esti-
mate, such as the ATE. Let 9 represent an estimator, or procedure for generat-
ing estimates. For example, 6 may represent the difference in average outcomes
between treatment and control groups. The expected value of this estimator
is the average estimate we would obtain if we apply this estimator to all pos-
sible realizations of a given experiment or observational study. We say that 9
is unbiased if E(6) = 9; in words, the estimator 0 is unbiased if the expected
value of this estimator is 9, the parameter of interest. Although unbiasedness is
a property of estimators and not estimates, we refer to the estimates generated
by an unbiased estimator as "unbiased estimates."



F

36 CAUSAL I N F E R E N C E AND EXPERIMENTATION

2.5 The Mechanics of Random Assignment

The result in equation (2.14) hinges on random assignment, and so it is important
to be clear about what constitutes random assignment. Simple random assignment is
a term of art, referring to a procedure—a die roll or coin toss—that gives each sub-
ject an identical probability of being assigned to the treatment group. The practical
drawback of simple random assignment is that when N is small, random chance can
create a treatment group that is larger or smaller than what the researcher intended.
For example, you could flip a coin to assign each of 10 subjects to the treatment con-
dition, but there is only a 24.6% chance of ending up with exactly 5 subjects in treat-
ment and 5 in control. A useful special case of simple random assignment is complete
random assignment, where exactly mofN units are assigned to the treatment group
with equal probability.6

The procedure used to conduct complete random assignment can take any of
three equivalent forms. Suppose one has N subjects and seeks to assign treatments to
m of them. The first method is to select one subject at random, then select another
at random from the remaining units, and so forth until you have selected m subjects
into the treatment group. A second method is to enumerate all of the possible ways
that m subjects maybe selected from a list of N subjects, and randomly select one of
the possible allocation schemes. A third method is to randomly permute the order of
all N subjects and label the first m subjects as the treatment group.7

Beware of the fact that random is a word that is used loosely in common par-
lance to refer to procedures that are arbitrary, haphazard, or unplanned. The problem
is that arbitrary, haphazard, or unplanned treatments may follow systematic patterns
that go unnoticed. Procedures such as alternation are risky because there may be
systematic reasons why certain types of subjects might alternate in a sequence, and
indeed, some early medical experiments ran into exactly this problem.8 We use the
term random in a more exacting sense. The physical or electronic procedure by which
randomization is conducted ensures that assignment to the treatment group is statis-
tically independent of all observed or unobserved variables.

CAUSAL INFERENCE AND EXPERIMENTATION 37

6 In Chapters 3 and 4, we discuss other frequently used methods of random assignment: clustered ran-
dom assignment, where groups of subjects are randomly assigned to treatment and control, and block
random assignment (also called stratified random assignment), where individuals are first divided into
blocks, and then random assignment is performed within each block. Box 2.5 notes that a defining feature
of complete (as opposed to clustered or blocked) random assignment is that all possible assignments of
N subjects to a treatment group of size m are equally likely.
7 Cox and Reid 2000, p. 20. The term complete randomization is a bit awkward, as the word complete
does not convey the requirement that exactly m units are allocated to treatment, but this terminology has
become standard (see Rosenbaum 2002, pp. 25-26).
8 Hrobjartsson, Gotzsche, and Gluud 1998.

In practical terms, random assignment is best done using statistical software.
Here is an easy procedure for implementing complete random assignment. First,
determine N, the number of subjects in your experiment, and m, the number of sub-
jects who will be allocated to the treatment group. Second, set a random number
"seed" using a statistics package, so that your random numbers may be reproduced
by anyone who cares to replicate your work. Third, generate a random number for
each subject. Fourth, sort the subjects by their random numbers in ascending order.
Finally, classify the first m observations as the treatment group. Example programs
using R may be found at http://isps.research.yale.edu/FEDAI.

Generating random numbers is just the first step in implementing random
assignment. After the numbers are generated, one must take pains to preserve the
integrity of the assignment process. A deficiency of alternation and many other arbi-
trary procedures is that they allow those administering the allocation to foresee who
will be assigned to which experimental group. If a receptionist seeks to get the sickest
patients into the experimental treatment group and knows that the pattern of assign-
ments alternates, he can reorder the patients in such a way as to shuttle the sickest
subjects into the treatment group.9 The same concern arises even when a random
sequence of numbers is used to assign incoming patients: random allocation may be
undone if the receptionist knows the order of assignments ahead of time, because
that enables him to position patients so that they will be assigned to a certain experi-
mental group. In order to guard against potential threats to the integrity of random
assignment, researchers should build extra procedural safeguards into their experi-
mental designs, such as blinding those administering the experiment to the subjects'
assigned experimental groups.

2.6 The Threat of Selection Bias When
Random Assignment Is Not Used

Without random assignment, the identification strategy derived from equation (2.14)
unravels. The treatment and control groups are no longer random subsets of all units
in the sample. Instead, we confront what is known as a selection problem: receiving
treatment may be systematically related to potential outcomes. For example, absent
random assignment, villages determine whether their councils are headed by women.
The villages that end up with female council heads may not be a random subset of

all villages.

9 For examples of experiments in which random assignment was subverted, see Torgerson and Torger-
son 2008.
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To see how nonrandom selection jeopardizes the identification strategy of com-
paring average outcomes in the treatment and control groups, rewrite the expected dif-
ference in outcomes from equation (2.13) by subtracting and adding E[Y.(0) \. = I]:

E[Y.(1)\D.= 1] -£[y ((0)|P. = 0]

Expected difference between treated and
untreated outcomes

= E[Y.(1) - Y.(0)|D. = 1] + E[Y.(0)|D. = 1] - E[Y.(0)|D. = 0]. (2.15)

ATE among the treated Selection bias

Under random assignment, the selection bias term is zero, and the ATE among the
(randomly) treated villages is the same as the ATE among all villages. In the absence
of random assignment, equation (2.15) warns that the apparent treatment effect is a
mixture of selection bias and the ATE for a subset of villages.

In order to appreciate the implications of equation (2.15), consider the follow-
ing scenario. Suppose that instead of randomly selecting villages to receive the treat-
ment, our procedure were to let villages decide whether to take the treatment. Refer
back to Table 2.1 and imagine that, if left to their own devices, Village 5 and Village 7
always elect a woman due to villagers' pent-up demand for water sanitation, while
the remaining villages always elect a man.10 Self-selection in this case leads to an
exaggerated estimate of the ATE because receiving the treatment is associated with
lower-than-average values of Y(0) and higher-than-average values of Y(l). The aver-
age outcome in the treatment group is 25, and the average outcome in the control
group is 16. The estimated ATE is therefore 9, whereas the actual ATE is 5. Referring
to equation (2.15) we see that in this case the ATE among the treated is not equal
to the ATE for the entire subject pool, nor is the selection bias term equal to zero.
The broader point is that it is risky to compare villages that choose to receive the
treatment with villages that choose not to. In this example, self-selection is related
to potential outcomes; as a result, the comparison of treated and untreated villages
recovers neither the ATE for the sample as a whole nor the ATE among those villages
that receive treatment.

The beauty of experimentation is that the randomization procedure generates a
schedule of treatment and control assignments that are statistically independent of

10 When taking expectations over hypothetical replications of an experiment, we consider all possible
random assignments. In our example of non-random allocation, however, nature makes the assignment.
When taking expectations, we must therefore consider the average of all possible natural assignments.
Rather than make up an assortment of possible assignments and stipulate the probability that each sce-
nario occurs, we have kept the example as simple as possible and assumed that the villages "always" elect
the same type of candidate. In effect, we are taking expectations over just one possible assignment that
occurs with probability 1.
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potential outcomes. In other words, the assumptions underlying equations (2.9) to
(2.13) are justified by reference to the. procedure of random assignment, not substan-
tive arguments about the comparability of potential outcomes in the treatment and

control groups.
The preceding discussion should not be taken to imply that experimentation

invokes no substantive assumptions. The unbiasedness of the difference-in-means
estimator hinges not only on random assignment but also on two assumptions about
potential outcomes, the plausibility of which will vary depending on the application.
The next section spells out these important assumptions.

2.7 Two Core Assumptions about
Potential Outcomes

To this point, our characterization of potential outcomes has glossed over two impor-
tant details. In order to ease readers into the framework of potential outcomes, we
simply stipulated that each subject has two potential outcomes, Y.(l) if treated and
Y.(0) if not treated. To be more precise, each potential outcome depends solely on
whether the subject itself receives the treatment. When writing potential outcomes in
this way, we are assuming that potential outcomes respond only to the treatment and
not some other feature of the experiment, such as the way the experimenter assigns
treatments or measures outcomes. Furthermore, potential outcomes are defined over
the set of treatments that the subject itself receives, not the treatments assigned to
other subjects. In technical parlance, the "solely" assumption is termed exdudability
and the "itself" assumption is termed non-interference.

2.7.1 Exdudability

When we define two, and only two, potential outcomes based on whether the treat-
ment is administered, we implicitly assume that the only relevant causal agent is
receipt of the treatment. Because the point of an experiment is to isolate the causal
effect of the treatment, our schedule of potential outcomes excludes from consider-
ation factors other than the treatment. When conducting an experiment, therefore,
we must define the treatment and distinguish it from other factors with which it may
be correlated. Specifically, we must distinguish between d., the treatment, and z., a
variable that indicates which observations have been allocated to treatment or con-
trol. We seek to estimate the effect of d., and we assume that the treatment assign-
ment z. has no effect on outcomes except insofar as it affects the value of d..

The term exclusion restriction or exdudability refers to the assumption that z can
be omitted from the schedule of potential outcomes for Y.(l) and Y.(0). Formally, this
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assumption may be written as follows. Let Y.(z, d) be the potential outcome when
z. = z and d. = d, for z £ (0, 1) and for d G (0, 1). For example, if z. = 1 and
d. = I , the subject is assigned to the treatment group and receives the treatment.
We can also envision other combinations. For example, if z. = 1 and d. = 0, the
subject is assigned to the treatment group but for some reason does not receive the
treatment. The exclusion restriction assumption is that Y.(l, d) = 7(0, d). In other
words, potential outcomes respond only to the input from d ; the value of z is irrele-
vant. Unfortunately, this assumption cannot be verified empirically because we never
observe both Y.(l, d) and Y.(0, d) for the same subject.

The exclusion restriction breaks down when random assignment sets in motion
causes of Y. other than the treatment d.. Suppose the treatment in our running exam-
ple were denned as whether or not a woman council head presides over deliberations
about village priorities. Our ability to estimate the effect of this treatment would be
jeopardized if nongovernmental aid organizations, sensing that newly elected women
will prioritize clean water, were to redirect their efforts to promote water sanitation
to male-led villages. If outside aid flows to male-led villages, obviating the need for
male village council leaders to allocate their budgets to water sanitation, the apparent
difference between water sanitation budgets in councils led by women and councils
led by men will exaggerate the true effect of the treatment, as defined above.11 Even if
it were the case that women council leaders have no effect on their own villages1 bud-
gets, the behavior of the NGOs could generate different average budgets in male- and
female-led villages.

Asymmetries in measurement represent another threat to the excludability assump-
tion. Suppose, for example, that in our study of Indian villages, we were to dispatch
one group of research assistants to measure budgets in the treatment group and a
different group of assistants to measure budgets in the control group. Each group
of assistants may apply a different standard when determining what expenditures
are to be classified as contributing to water sanitation. Suppose the research assis-
tants in the treatment group were to use a more generous accounting standard—they
tend to exaggerate the amount of money that the village allocates to water sanitation.
When we compare average budgets in the treatment and control groups, the estimated
treatment effect will be a combination of the true effect of female village heads on
budgets and accounting procedures that exaggerate the amount of money spent on
water sanitation in those villages. Presumably, when we envisioned the experiment
and what we might learn from it, we sought to estimate only the first of these two
effects. We wanted to know the effect of female leadership on budgets using a consis-
tent standard of accounting.

11 Whether an excludability violation occurs depends on how a treatment effect is defined. If one were
to define the effect of electing a woman to include the compensatory behavior of NGOs, this assumption
would no longer be violated.

To illustrate the consequences of measurement asymmetry, we may write out
a simple model in which outcomes are measured with error. Under this scenario,
the usual schedule of potential outcomes expands to reflect the fact that outcomes
are influenced not only by d., but also by z., which determines which set of research
assistants measure the outcome. Suppose that among untreated units we observe
y.(0)' = Y.(0) + e.Q, where e.Q is the error that is made when measuring the poten-
tial outcome if an observation is assigned to the control group. For treated units, let
Y.(l)' = Y.(l) + e.r What happens if we compare average outcomes among treated
and untreated units? The expected value of the difference-in-means estimator from
equation (2.14) is

ym
Zj\i

m N - m
= E[Yi(l)'\Di= 1] -E[Y.(OY D. -0]

= E[Y,(1) D. = 1] + E[en\D. = 1] - £[7.(0)|D. = 0] - E[ea D. = 0]. (2.16)

Comparing equation (2.16) to equation (2.14) reveals that the difference-in-means
estimator is biased when the measurement errors in the treated and untreated groups
have different expected values:

E[en D,= 1] * E[ea\Dt = 0]. [2.17]

In this book, when we speak of a "breakdown in symmetry," we have in mind pro-
cedures that may distort the expected difference between treatment and control
outcomes.

What kinds of experimental procedures bolster the plausibility of the exclud-
ability assumption? The broad answer is anything that helps ensure uniform handling
of treatment and control groups. One type of procedure is double-blindness—neither
the subjects nor the researchers charged with measuring outcomes are aware of
which treatments the subjects receive, so that they cannot consciously or uncon-
sciously distort the results. Another procedure is parallelism in the administration
of an experiment: the same questionnaires and survey interviewers should be used
to assess outcomes in both treatment and control groups, and both groups' outcomes
should be gathered at approximately the same time and under similar conditions. If
outcomes for the control group are gathered in October, but outcomes in the treat-
ment group are gathered in November, symmetry may be jeopardized.

The exclusion restriction cannot be evaluated unless the researcher has stated
precisely what sort of treatment effect the experiment is intended to measure and
designed the experiment accordingly. Depending on the researcher's objective, the
control group may receive a special type of treatment so that the treatment vs. con-
trol comparison isolates a particular aspect of the treatment. A classic example of a
research design that attempts to isolate a specific cause is a pharmaceutical trial in
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which an experimental pill is administered to the treatment group while an identi-
cal sugar pill is administered to the control group. The aim of administering a pill
to both groups is to isolate the pharmacological effects of the ingredients, holding
constant the effect of merely taking some sort of pill. In the village council exam-
ple, a researcher may wish to distinguish the effects of female leadership of local
councils from the effects of merely appointing non-incumbents to the headship. In
principle, one could compare districts with randomly assigned women heads to dis-
tricts with randomly assigned term limits, a policy that has the effect of bringing
non-incumbents into leadership roles. This approach to isolating causal mechanisms
is revisited again in Chapter 10, where we discuss designs that attempt to differentiate
the active ingredients in a multifaceted treatment.

Protecting the theoretical integrity of the treatment vs. control comparison is of
paramount importance in experimental design. In the case of the village budget study,
the aim is to estimate the budgetary consequences of having a randomly allocated
female village head, not the consequences of using a different measurement standard
to evaluate outcomes in treatment and control villages. The same argument goes for
other aspects of research activity that might be correlated with treatment assignment.
For example, if the aim is to measure the effect of female leadership on budgets per
se, bias may be introduced if one sends a delegation of researchers to monitor village
council deliberations in women-headed villages only. Now the observed treatment
effect is a combination of the effect of female leadership and the effect of research
observers. Whether one regards the presence of the research delegation as a distortion
of measurement or an unintended pathway by which assignment to treatment affects
the outcome, the formal structure of the problem remains the same. The expected
outcome of the experiment no longer reveals the causal effect we set out to estimate.

The symmetry requirement does not rule out cross-cutting treatments. For exam-
ple, one could imagine a version of India's reservation policy that randomly assigned
some village council seats to women, others to people from lower castes, and still
others to women from lower castes. When we discuss factorial designs in Chapter 9,
we will stress what can be learned from deploying several treatments in combination
with one another. The point of these more complex designs is to learn about combina-
tions of treatments while still preserving symmetry: randomly assigning treatments
both alone and in combination with one another allows the researcher to distinguish
empirically between having a female village head and having a female village head
who is also from a lower caste.

Finally, let's revisit the case in which other actors intervene in response to your
treatment assignments. For example, suppose that in anticipation of greater spend-
ing on water sanitation, interest groups devote special attention to lobbying village
councils headed by women. Or it may go the other way: interest groups focus greater
efforts on villages headed by men because they believe that's where they will meet the
most resistance from budget makers. Whether interest group interference violated

the assumption of excludability depends on how we define the treatment effect. Inter-
est group activity presents no threat to the exclusion restriction if we define the effect
of installing a female council head to include all of the indirect repercussions that
it could have on interest group activity. If, however, we seek to estimate the specific
effect of having female council heads without any interference by interest groups, our
experimental design may be inadequate unless we can find a way to prevent inter-
est groups from responding strategically. These kinds of scenarios again underscore
the importance of clearly stating the experimental objectives so that researchers and
readers can assess the plausibility of the exclusion restriction.

2.7.2 Non-interference

For ease of presentation, the above discussion only briefly mentioned an assump-
tion that plays an important role in the definition and estimation of causal effects.
This assumption is sometimes dubbed the Stable Unit Treatment Value Assumption,
or SUTVA, but we refer to it by a more accessible name, non-interference.12 In the
notation used above, expressions such as Y.(d) are written as though the value of
the potential outcome for unit i depends only upon whether or not the unit itself
gets the treatment (whether d equals one or zero). A more complete notation would
express a more extensive schedule of potential outcomes depending on which treat-
ments are administered to other units. For example, for Village 1 we could write down
all of the potential outcomes if only Village 1 is treated, if only Village 2 is treated, if
Villages 1 and 2 are treated, and so forth. This schedule of potential outcomes quickly
gets out of hand. Suppose we listed all of the potential outcomes if exactly two of the
seven villages are treated: there would now be 21 potential outcomes for each village.
Clearly, if our study involves just seven villages, we have no hope of saying anything
meaningful about this complex array of causal effects unless we make some simplify-
ing assumptions.

The non-interference assumption cuts through this complexity by ignoring the
potential outcomes that would arise if subject i were affected by the treatment of
other subjects. Formally, we reduce the schedule of potential outcomes Y,(d), where d
describes all of the treatments administered to all subjects, to a much simpler sched-
ule Y.(d), where d refers to the treatment administered to subject i.13 In the context
of our example, non-interference implies that the sanitation budget in one village is
unaffected by the gender of the council heads in other villages. Non-interference is an
assumption common to both experimental and observational studies.

12 The term "stable" in SUTVA refers to the stipulation that the potential outcomes for a given village
remain stable regardless of which other villages happen to be treated. The technical aspects of this term are
discussed in Rubin 1980 and Rubin 1986.
13 Implicit in this formulation of potential outcomes is the assumption that potential outcomes are unaf-
fected by the overall pattern of actual or assigned treatments. In other words, Y.(z, d) = Y.(z, d).
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Is non-interference realistic in this example? It is difficult to say without more
detailed information about communication between villages and the degree to which
their budget allocations are interdependent. If the collection of villages were dis-
persed geographically, it might be plausible to assume that the gender of the village
head in one village has no consequences for outcomes in other villages. On the other
hand, if villages were adjacent, the presence of a woman council head in one vil-
lage might encourage women in other villages to express their policy demands more
forcefully. Proximal villages might also have interdependent budgets; the more one
village spends on water sanitation, the less the neighboring village needs to spend in
order to maintain its own water quality.

The estimation problems that interference introduces are potentially quite com-
plicated and unpredictable. Untreated villages that are affected by the treatments that
nearby villages receive no longer constitute an untreated control group. If women
council heads set an example of water sanitation spending that is then copied by neigh-
boring villages headed by men, a comparison between average outcomes in treatment
villages and (semi-treated) control villages will tend to understate the average treat-
ment effect as defined in equation (2.3), which is usually understood to refer to the
contrast between treated potential outcomes and completely untreated potential out-
comes. On the other hand, if female council heads cause neighboring villages headed
by men to free ride on water sanitation projects and allocate less of their budget to
it, the apparent difference in average budget allocations will exaggerate the average
treatment effect. Given the vagaries of estimation in the face of interference, research-
ers often try to design experiments in ways that minimize interference between units
by spreading them out temporally or geographically. Another approach, discussed
at length in Chapter 8, is to design experiments in ways that allow the researcher to
detect spillover between units. Instead of treating interference as a nuisance, these
more complex experimental designs aim to detect evidence of communication or stra-
tegic interaction among units.

SUMMARY

This chapter has limited its purview to a class of randomized experiments in which
treatments are deployed exactly as assigned and outcomes are observed for all of the
assigned subjects. This class of studies is a natural starting point for discussing core
assumptions and what they imply for research design. The chapters that follow will
introduce further assumptions in order to handle the complications that arise due to
noncompliance (Chapters 5 and 6) and attrition (Chapter 7).

We began by denning a causal effect as the difference between two potential out-
comes, one in which a subject receives treatment and the other in which the subject
does not receive treatment. The causal effect for any given subject is not directly observ-

able. However, experiments provide unbiased estimates of the average treatment effect
(ATE) among all subjects when certain assumptions are met. The three assumptions
invoked in this chapter are random assignment, excludability, and non-interference.

1. Random assignment: Treatments are allocated such that all units have a known
probability between 0 and 1 of being placed into the treatment group. Simple
random assignment or complete random assignment implies that treatment
assignments are statistically independent of the subjects' potential outcomes.

This assumption is satisfied when all treatment assignments are determined
by the same random procedure, such as the flip of a coin. Because random
assignment may be compromised by those allocating treatments or assisting
subjects, steps should be taken to minimize the role of discretion.

2. Excludability: Potential outcomes respond solely to receipt of the treatment, not
to the random assignment of the treatment or any indirect by-products of ran-
dom assignment. The treatment must be defined clearly so that one can assess
whether subjects are exposed to the intended treatment or something else.

This assumption is jeopardized when (i) different procedures are used to
measure outcomes in the treatment and control groups and (ii) research activi-
ties, other treatments, or third-party interventions other than the treatment of
interest differentially affect the treatment and control groups.

3. Non-interference: Potential outcomes for observation i reflect only the treat-
ment or control status of observation i and not the treatment or control status of
other observations. No matter which subjects the random assignment allocates
to treatment or control, a given subjects potential outcomes remain the same.

This assumption is jeopardized when (i) subjects are aware of the treatments
that other subjects receive, (ii) treatments may be transmitted from treated to
untreated subjects, or (iii) resources used to treat one set of subjects diminish
resources that would otherwise be available to other subjects. See Chapter 10 for
a more extensive list of examples.

Random assignment is different from the other two assumptions in that it refers
to a procedure and the manner in which researchers carry it out. Excludability and
non-interference, on the other hand, are substantive assumptions about the ways in
which subjects respond to the allocation of treatments. When assessing excludability
and non-interference in the context of a particular experiment, the first step is to
carefully consider how the causal effect is defined. Do we seek to study the effect of
electing women to village council positions or rather the effect of electing women
from a pool of candidates that consists only of women? When defining the treat-
ment effect of installing a female village council head, is the appropriate comparison
a village with male leadership, or a male-led village with no neighboring female-led
villages? Attending to these subtleties encourages a researcher to design more exact-
ing experimental comparisons and to interpret the results with greater precision.
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Attentiveness to these core assumptions also helps guide experimental investiga-
tion, urging researchers to explore the empirical consequences of different research
designs. A series of experiments in a particular domain may be required before a
researcher can gauge whether subjects seem to be affected by the random assign-
ment over and above the treatment (a violation of excludability) or by the treatments
administered to other units (interference).

SUGGESTED READINGS

Holland (1986) and Rubin (2008) provide non-technical introductions to potential outcomes
notation. Fisher (1935) and Cox (1958) are two classic books on experimental design and analy-
sis; Dean and Voss (1999) and Kuehl (1999) offer more modern treatments. See Rosenbaum
and Rubin (1984) on the distinctive statistical properties of randomly assigned treatments.

EXERCISES: CHAPTER 2

1. Potential outcomes notation:
(a) Explain the notation " Y.(0)."
(b) Explain the notation "y.(0) | D. = I" and contrast it with the notation " Y(0) | d. = 1."
(c) Contrast the meaning of "y.(0)" with the meaning of "y.(0) D = 0."
(d) Contrast the meaning of" y.(0) D. = I" with the meaning of "Y.(0) \D. = 0."
(e) Contrast the meaning of "£[Y(0)]" with the meaning of "£[Y(0) | D. = 1]."
(f) Explain why the "selection bias" term in equation (2.15), £[Y,(0) D. = 1] .-

£[ Y(0) | D. — 0], is zero when D. is randomly assigned.

2. UsethevaluesdepictedinTable2.1toillustratethat£[y.(0)] - E[Y.(1)] = E[Y(0) -
3. Use the values depicted in Table 2.1 to complete the table below.

(a)
(b)

(c)

(d)

(e)

(f)

Fill in the number of observations in each of the nine cells.
Indicate the percentage of all subjects that fall into each of the nine cells. (These cells
represent what is known as the joint frequency distribution of Y.(0) and Y.(l).)
At the bottom of the table, indicate the proportion of subjects falling into each category
of y.(l). (These cells represent what is known as the marginal distribution of Y.(l).)
At the right of the table, indicate the proportion of subjects falling into each category
of y.(0) (i.e., the marginal distribution of Y.(0)).

Use the table to calculate the conditional expectation that E[Y.(0) | Y.(l) > 15].
(Hint: This expression refers to the expected value of Y".(0) given that Y.(l) is greater
than 15.)

Use the table to calculate the conditional expectation that £[ Y.(l) Y,(0) > 15].

Y,(0]

10

15

20

Marginal distribution
of HI)

20 30

Marginal distribution
of r (0)

Suppose that the treatment indicator d. is either 1 (treated) or 0 (untreated). Define the av-

erage treatment effect among the treated, or ATT for short, as ̂  i r,(i,l 21 dc Using tlle

equations in this chapter, prove the following claim: "When treatments are allocated us-
ing complete random assignment, the ATT is, in expectation, equal to the ATE. In other
words, taking expectations over all possible random assignments, E[T.\D. = 1] = £[T.],
where r. is a randomly selected observation's treatment effect.
A researcher plans to ask six subjects to donate time to an adult literacy program. Each
subject will be asked to donate either 30 or 60 minutes. The researcher is considering
three methods for randomizing the treatment. One method is to flip a coin before talk-
ing to each person and to ask for a 30-minute donation if the coin comes up heads or a
60-minute donation if it comes up tails. The second method is to write "30" and "60"
on three playing cards each, and then shuffle the six cards. The first subject would be as-
signed the number on the first card, the second subject would be assigned the number
on the second card, and so on. A third method is to write each number on three different
slips of paper, seal the six slips into envelopes, and shuffle the six envelopes before talk-
ing to the first subject. The first subject would be assigned the first envelope, the second
subject would be assigned the second envelope, and so on.
(a) Discuss the strengths and weaknesses of each approach.
(b) In what ways would your answer to (a) change if the number of subjects were 600

instead of 6?
(c) What is the expected value of D. (the assigned number of minutes) if the coin toss

method is used? What is the expected value of D. if the sealed envelope method is
used?

Many programs strive to help students prepare for college entrance exams, such as the
SAT. In an effort to study the effectiveness of these preparatory programs, a researcher
draws a random sample of students attending public high school in the United States, and
compares the SAT scores of those who took a preparatory class to those who did not. Is
this an experiment or an observational study? Why?
Suppose that an experiment were performed on the villages in Table 2.1, such that two vil-
lages are allocated to the treatment group and the other five villages to the control group.
Suppose that an experimenter randomly selects Villages 3 and 7 from the set of seven
villages and places them into the treatment group. Table 2.1 shows that these villages have
unusually high potential outcomes.
(a) Define the term unbiased estimator.
(b) Does this allocation procedure produce upwardly biased estimates? Why or why not?
(c) Suppose that instead of using random assignment, the researcher placed Villages 3

and 7 into the treatment group because the treatment could be administered inex-
pensively in those villages. Explain why this procedure is prone to bias.

Peisakhin and Pinto14 report the results of an experiment in India designed to test the
effectiveness of a policy called the Right to Information Act (RTIA), which allows citi-
zens to inquire about the status of a pending request from government officials. In their
study, the researchers hired confederates, slum dwellers who sought to obtain ration cards
(which permit the purchase of food at low cost). Applicants for such cards must fill out a

14 Peisakhin and Pinto 2010.
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form and have their residence and income verified by a government agent. Slum dwellers
widely believe that the only way to obtain a ration card is to pay a bribe. The researchers
instructed the confederates to apply for ration cards in one of four ways, specified by the
researchers. The control group submitted an application form at a government office; the
RTIA group submitted a form and followed it up with an official Right to Information
request; the NGO group submitted a letter of support from a local nongovernmental
organization (NGO) along with the application form; and finally, a bribe group submitted
an application and paid a small fee to a person who is known to facilitate the processing
of forms.

Number of confederates in the study

Number of confederates who had residence verification

Median number of days to residence verification

Number of confederates who received a ration card
within one year

Bribe

24

24

17

24

RTIA

23

23

37

20

NGO

18

18

37

3

Control

21

20

37

5

(a)

(b)

(c)

Interpret the apparent effects of the treatments on the proportion of applicants who
have their residence verified and the speed with which verification occurred.
Interpret the apparent effects of the treatments on the proportion of applicants who
actually received a ration card.

What do these results seem to suggest about the effectiveness of the Right to Infor-
mation Act as a way of helping slum dwellers obtain ration cards?

9. A researcher wants to know how winning large sums of money in a national lottery affects
people's views about the estate tax. The researcher interviews a random sample of adults
and compares the attitudes of those who report winning more than $10,000 in the lottery
to those who claim to have won little or nothing. The researcher reasons that the lottery
chooses winners at random, and therefore the amount that people report having won is
random.

(a) Critically evaluate this assumption. (Hint: are the potential outcomes of those who
report winning more than $10,000 identical, in expectation, to those who report
winning little or nothing?)

(b) Suppose the researcher were to restrict the sample to people who had played the

lottery at least once during the past year. Is it now safe to assume that the potential

outcomes of those who report winning more than $10,000 are identical, in expecta-
tion, to those who report winning little or nothing?

10. Suppose researchers seek to assess the effect of receiving a free newspaper subscription
on students' interest in politics. A list of student dorm rooms is drawn up and sorted

randomly. Dorm rooms in the first half of the randomly sorted list receive a newspaper
at their door each morning for two months; dorm rooms in the second half of the list do
not receive a paper.

(a) University researchers are sometimes required to disclose to subjects that they are
participating in an experiment. Suppose that prior to the experiment, researchers
distributed a letter informing students in the treatment group that they would be

11.

12.

receiving a newspaper as part of a study to see if newspapers make students more
interested in politics. Explain (in words and using potential outcomes notation) how
this disclosure may jeopardize the excludability assumption.

(b) Suppose that students in the treatment group carry their newspapers to the cafeteria
where they may be read by others. Explain (in words and using potential outcomes

notation) how this may jeopardize the non-interference assumption.
Several randomized experiments have assessed the effects of drivers' training classes on
the likelihood that a student will be involved in a traffic accident or receive a ticket for
a moving violation.15 A complication arises because students who take drivers' training
courses typically obtain their licenses faster than students who do not take a course.16 (The

reason is unknown but may reflect the fact that those who take the training are better
prepared for the licensing examination.) If students in the control group on average start

driving much later, the proportion of students who have an accident or receive a ticket
could well turn out to be higher in the treatment group. Suppose a researcher were to
compare the treatment and control group in terms of the number of accidents that occur

within three years of obtaining a license.
(a) Does this measurement approach maintain symmetry between treatment and con-

trol groups?
(b) Would symmetry be maintained if the outcome measure were the number of acci-

dents per mile of driving?

(c) Suppose researchers were to measure outcomes over a period of three years start-
ing the moment at which students were randomly assigned to be trained or not.
Would this measurement strategy maintain symmetry? Are there drawbacks to this
approach?

A researcher studying 1,000 prison inmates noticed that prisoners who spend at least
three hours per day reading are less likely to have violent encounters with prison staff.

The researcher therefore recommends that all prisoners be required to spend at least three
hours reading each day. Let d. be 0 when prisoners read less than three hours each day
and 1 when prisoners read more than three hours each day. Let Y.(0) be each prisoners
potential number of violent encounters with prison staff when reading less than three

hours per day, and let Y.(l) be each prisoner's potential number of violent encounters
when reading more than three hours per day.

(a) In this study, nature has assigned a particular realization of d. to each subject. When

assessing this study, why might one be hesitant to assume that £[Y(0) \D. = 0] =

E[Y.(Q)\D. = 1] and£[Y.(l)|D. = 0] = E[Y.(1)\D. = 1]?
(b) Suppose that researchers were to test this researcher's hypothesis by randomly

assigning 10 prisoners to a treatment group. Prisoners in this group are required to
go to the prison library and read in specially designated carrels for three hours each

day for one week; the other prisoners, who make up the control group, go about
their usual routines. Suppose, for the sake of argument, that all prisoners in the

treatment group in fact read for three hours each day and that none of the prisoners

15 See Roberts and Kwan 2001.
16 Vernick et al. 1999.
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in the control group read at all during the week of the study. Critically evaluate the
excludability assumption as it applies to this experiment.

(c) State the assumption of non-interference as it applies to this experiment.
(d) Suppose that the results of this experiment were to indicate that the reading treat-

ment sharply reduces violent confrontations with prison staff. How does the
non-interference assumption come into play if the aim is to evaluate the effects of a
policy whereby all prisoners are required to read for three hours?

CHAPTER 3

Sampling Distributions, Statistical
Inference, and Hypothesis Testing

R igorous quantification of uncertainty is a hallmark of scientific inquiry. When
analyzing experimental data, the aim is not only to generate unbiased estimates
of the average treatment effect but also to draw inferences about the uncertainty

surrounding these estimates. Among the most attractive features of experimentation
is that random allocation of treatments is a reproducible procedure. Reproducibility
allows us to assess the sampling distribution, or collection of estimated ATEs that
could have come about under different random assignments in order to better under-
stand the uncertainty associated with the experiment we conducted. One objective
of this chapter is to explain how experimental design affects the sampling distribu-
tion. We consider ways of designing experiments so as to reduce sampling variability,
and we call attention to the fact that the sampling distribution may change markedly
depending on the procedures used to randomly allocate subjects to treatment and
control conditions.

A second objective is to guide the reader through the calculation and interpreta-
tion of key statistical results. When analyzing an experiment, you should consider
both the estimated ATE and the uncertainty with which it is estimated. Unless you
have prior information about the value of the ATE, the experimental estimate is one's
best guess of the true treatment effect, but this guess may be close to or far from
the true average causal effect. Statisticians commonly assess uncertainty in two ways.
One method is to investigate whether the experimental results are sufficiently infor-
mative to refute a determined skeptic who insists- that there is no treatment effect
whatsoever. Another approach is to identify a range of values that probably bracket
the true average treatment effect. This chapter introduces a flexible set of statistical
techniques that may be used to assess uncertainty across a wide array of different
experimental designs.
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