Chapter 4

Instrumental Variables in Action: Sometimes You Get What You Need

Anything that happens, happens.
Anything that, in happening, causes something else to happen,
causes something else to happen.
Anything that, in happening,
causes itself to happen again, happens again.
It doesn't necessarily do it in chronological order, though.
Douglas Adams, Mostly Harmless (1995)

Two things distinguish the discipline of Econometrics from our older sister field of Statistics. One is a lack of shyness about causality. Causal inference has always been the name of the game in applied econometrics. Statistician Paul Holland (1986) cautions that there can be "no causation without manipulation," a maxim that would seem to rule out causal inference from non-experimental data. Less thoughtful observers fall back on the truism that "correlation is not causality." Like most people who work with data for a living, we believe that correlation can sometimes provide pretty good evidence of a causal relation, even when the variable of interest has not been manipulated by a researcher or experimenter. ${ }^{1}$

The second thing that distinguishes us from most statisticians - and indeed most other social scientistsis an arsenal of statistical tools that grew out of early econometric research on the problem of how to estimate the parameters in a system of linear simultaneous equations. The most powerful weapon in this arsenal is the method of Instrumental Variables (IV), the subject of this chapter. As it turns out, IV does more than allow us to consistently estimate the parameters in a system of simultaneous equations, though it allows us

[^0]to do that as well.
Studying agricultural markets in the 1920s, the father and son research team of Phillip and Sewall Wright were interested in a challenging problem of causal inference: how to estimate the slope of supply and demand curves when observed data on prices and quantities are determined by the intersection of these two curves. In other words, equilibrium prices and quantities - the only ones we get to observe - solve these two stochastic equations at the same time. Upon which curve, therefore, does the observed scatterplot of prices and quantities lie? The fact that population regression coefficients do not capture the slope of any one equation in a set of simultaneous equations had been understood by Phillip Wright for some time. The IV method, first laid out in Wright (1928), solves the statistical simultaneous equations problem by using variables that appear in one equation to shift this equation and trace out the other. The variables that do the shifting came to be known as instrumental variables (Reiersol, 1941).

In a separate line of inquiry, IV methods were pioneered to solve the problem of bias from measurement error in regression models ${ }^{2}$. One of the most important results in the statistical theory of linear models is that a regression coefficient is biased towards zero when the regressor of interest is measured with random errors (to see why, imagine the regressor contains only random error; then it will be uncorrelated with the dependent variable, and hence the regression of Y_{i} on this variable will be zero). Instrumental variables methods can be used to eliminate this sort of bias.

Simultaneous equations models (SEMs) have been enormously important in the history of econometric thought. At the same time, few of today's most influential applied papers rely on an orthodox SEM framework, though the technical language used to discuss IV still comes from this framework. Today, we are more likely to find IV used to address measurement error problems than to estimate the parameters of an SEM. Undoubtedly, however, the most important contemporary use of IV is to solve the problem of omitted variables bias. IV solves the problem of missing or unknown control variables, much as a randomized trial obviates the need for extensive controls in a regression 3^{3}

4.1 IV and causality

We like to tell the IV story in two iterations, first in a restricted model with constant effects, then in a framework with unrestricted heterogeneous potential outcomes, in which case causal effects must also be heterogeneous. The introduction of heterogeneous effects enriches the interpretation of IV estimands, without changing the mechanics of the core statistical methods we are most likely to use in practice (typically, twostage least squares). An initial focus on constant effects allows us to explain the mechanics of IV with a

[^1]minimum of fuss.
To motivate the constant-effects setup as a framework for the causal link between schooling and wages, suppose, as before, that potential outcomes can be written
$$
\mathrm{Y}_{s i} \equiv f_{i}(s)
$$
and that
\[

$$
\begin{equation*}
f_{i}(s)=\pi_{0}+\pi_{1} s+\eta_{i}, \tag{4.1.1}
\end{equation*}
$$

\]

as in the introduction to regression in Chapter 3. Also, as in the earlier discussion, imagine that there is a vector of control variables, A_{i}, called "ability", that gives a selection-on-observables story:

$$
\eta_{i}=A_{i}^{\prime} \gamma+v_{i},
$$

where γ is again a vector of population regression coefficients, so that v_{i} and A_{i} are uncorrelated by construction. For now, the variables A_{i}, are assumed to be the only reason why η_{i} and s_{i} are correlated, so that

$$
E\left[\mathrm{~s}_{i} v_{i}\right]=0
$$

In other words if A_{i} were observed, we would be happy to include it in the regression of wages on schooling; thereby producing a long regression that can be written

$$
\begin{equation*}
\mathrm{Y}_{i}=\alpha+\rho \mathrm{S}_{i}+A_{i}^{\prime} \gamma+v_{i} \tag{4.1.2}
\end{equation*}
$$

Equation 4.1.2 is a version of the linear causal model, 3.2.9. The error term in this equation is the random part of potential outcomes, v_{i}, left over after controlling for A_{i}. This error term is uncorrelated with schooling by assumption. If this assumption turns out to be correct, the population regression of Y_{i} on S_{i} and A_{i} produces the coefficients in 4.1.2.

The problem we initially want to tackle is how to estimate the long-regression coefficient, ρ, when A_{i} is unobserved. Instrumental variables methods can be used to accomplish this when the researcher has access to a variable (the instrument, which we'll call z_{i}), that is correlated with the causal variable of interest, s_{i}, but uncorrelated with any other determinants of the dependent variable. Here, the phrase "uncorrelated with any other determinants of the dependent variables" is like saying $\operatorname{Cov}\left(\eta_{i}, \mathrm{z}_{i}\right)=0$, or, equivalently, z_{i} is uncorrelated with both A_{i} and v_{i}. This statement is called an exclusion restriction since Z_{i} can be said to be excluded from the causal model of interest. The exclusion restriction is a version of the conditional independence assumption of the previous chapter, except that now it is the instrument which is independent of potential outcomes, instead of schooling itself (the "conditional" in conditional independence enters into
the discussion when we consider IV models with covariates).
Given the exclusion restriction, it follows from equation 4.1.2 that

$$
\begin{equation*}
\rho=\frac{\operatorname{Cov}\left(\mathrm{y}_{i}, \mathrm{z}_{i}\right)}{\operatorname{Cov}\left(\mathrm{s}_{i}, \mathrm{z}_{i}\right)}=\frac{\operatorname{Cov}\left(\mathrm{y}_{i}, \mathrm{z}_{i}\right) / V\left(\mathrm{z}_{i}\right)}{\operatorname{Cov}\left(\mathrm{s}_{i}, \mathrm{z}_{i}\right) / V\left(\mathrm{z}_{i}\right)} . \tag{4.1.3}
\end{equation*}
$$

The second equality in 4.1.3 is useful because it's usually easier to think in terms of regression coefficients than in terms of covariances. The coefficient of interest, ρ, is the ratio of the population regression of Y_{i} on Z_{i} (the reduced form) to the population regression of S_{i} on Z_{i} (the first stage). The IV estimator is the sample analog of expression 4.1.3. Note that the IV estimand is predicated on the notion that the first stage is not zero, but this is something you can check in the data. As a rule, if the first stage is only marginally significantly different from zero, the resulting IV estimates are unlikely to be informative, a point we return to later.

It's worth recapping the assumptions needed for the ratio of covariances in 4.1.3 to equal the casual effect, ρ. First, the instrument must have a clear effect on s_{i}. This is the first stage. Second, the only reason for the relationship between Y_{i} and z_{i} is the first-stage. For the moment, we're calling this second assumption the exclusion restriction, though as we'll see in the discussion of models with heterogeneous effects, this assumption really has two parts: the first is the statement that the instrument is as good as randomly assigned (i.e., independent of potential outcomes, conditional on covariates), while the second is that the instrument has no effect on outcomes other than through the first-stage channel.

So where can you find an instrumental variable? Good instruments come from institutional knowledge and your ideas about the processes determining the variable of interest. For example, the economic model of education suggests that educational attainment is determined by comparing the costs and benefits of alternative choices. Thus, one possible source of instruments for schooling is differences in costs due, say, to loan policies or other subsidies that vary independently of ability or earnings potential. A second source of variation in schooling is institutional constraints. A set of institutional constraints relevant for schooling are compulsory schooling laws. Angrist and Krueger (1991) exploit the variation induced by compulsory schooling in a paper that typifies the use of "natural experiments" to try to eliminate omitted variables bias

The starting point for the Angrist and Krueger (1991) quarter-of-birth strategy is the observation that most states required students to enter school in the calendar year in which they turn 6 . School start age is therefore a function of date of birth. Specifically, those born late in the year are young for their grade. In states with a December 31st birthday cutoff, children born in the fourth quarter enter school shortly before they turn 6 , while those born in the first quarter enter school at around age $6 \frac{1}{2}$. Furthermore, because compulsory schooling laws typically require students to remain in school only until their 16th birthday, these groups of students will be in different grades or through a given grade to different degree, when they reach the legal dropout age. In essence, the combination of school start age policies and compulsory schooling laws
creates a natural experiment in which children are compelled to attend school for different lengths of time depending on their birthdays.

Angrist and Krueger looked at the relationship between educational attainment and quarter of birth using US census data. Panel A of Figure 4.1.1 (adapted from Angrist and Krueger, 2001) displays the education-quarter-of-birth pattern for men in the 1980 Census who were born in the 1930s. The figure clearly shows that men born earlier in the calendar year tend to have lower average schooling levels. Panel A of Figure 4.1.1 is a graphical representation of the first-stage. The first-stage in a general IV framework is the regression of the causal variable of interest on covariates and the instrument(s). The plot summarizes this regression because average schooling by year and quarter of birth is what you get for fitted values from a regression of schooling on a full set of year-of-birth and quarter-of-birth dummies.

Panel B of Figure 4.1.1 displays average earnings by quarter of birth for the same sample used to construct panel A. This panel illustrates what econometricians call the "reduced form" relationship between the instruments and the dependent variable. The reduced form is the regression of the dependent variable on any covariates in the model and the instrument(s). Panel B shows that older cohorts tend to have higher earnings, because earnings rise with work experience. The figure also shows that men born in early quarters almost always earned less, on average, than those born later in the year, even after adjusting for year of birth, which plays the role of an exogenous covariate in the Angrist and Krueger (1991) setup. Importantly, this reduced-form relation parallels the quarter-of-birth pattern in schooling, suggesting the two patterns are closely related. Because an individual's date of birth is probably unrelated to his or her innate ability, motivation, or family connections, it seems credible to assert that the only reason for the up-and-down quarter-of-birth pattern in earnings is indeed the up-and-down quarter-of-birth pattern in schooling. This is the critical assumption that drives the quarter-of-birth IV story ${ }^{4}$

A mathematical representation of the story told by Figure 4.1.1 comes from the first-stage and reducedform regression equations, spelled out below:

$$
\begin{align*}
\mathrm{s}_{i} & =\mathrm{X}_{i}^{\prime} \pi_{10}+\pi_{11} \mathrm{Z}_{i}+\xi_{1 i} \tag{4.1.4a}\\
\mathrm{Y}_{i} & =\mathrm{X}_{i}^{\prime} \pi_{20}+\pi_{21} \mathrm{Z}_{i}+\xi_{2 i} \tag{4.1.4b}
\end{align*}
$$

The parameter π_{11} in equation 4.1.4a captures the first-stage effect of z_{i} on s_{i}, adjusting for covariates,

[^2]

Figure 4.1.1: Graphical depiction of first stage and reduced form for IV estimates of the economic return to schooling using quarter of birth (from Angrist and Krueger 1991).
X_{i}. The parameter π_{21} in equation 4.1.4b captures the reduced-form effect of z_{i} on Y_{i}, adjusting for these same covariates. In the language of the SEM, the dependent variables in these two equations are said to be the endogenous variables (where they are determined jointly within the system) while the variables on the right-hand side are said to be the exogenous variables (determined outside the system). The instruments, z_{i}, are a subset of the exogenous variables. The exogenous variables that are not instruments are said to be exogenous covariates. Although we're not estimating a traditional supply and demand system in this case, these SEM variable labels are still widely used in empirical practice.

The covariate-adjusted IV estimator is the sample analog of the ratio $\frac{\pi_{21}}{\pi_{11}}$. To see this, note that the denominators of the reduced-form and first-stage effects are the same. Hence, their ratio is

$$
\begin{equation*}
\rho=\frac{\pi_{21}}{\pi_{11}}=\frac{\operatorname{Cov}\left(\mathrm{Y}_{i}, \tilde{z}_{i}\right)}{\operatorname{Cov}\left(\mathrm{s}_{i}, \tilde{z}_{i}\right)} \tag{4.1.5}
\end{equation*}
$$

where \tilde{z}_{i} is the residual from a regression of z_{i} on the exogenous covariates, X_{i}. The right-hand side of 4.1.5) therefore swaps \tilde{z}_{i} for z_{i} in the general IV formula, 4.1.3. Econometricians call the sample analog of the left-hand side of equation 4.1.5 an Indirect Least Squares (ILS) estimator of ρ in the causal model with covariates,

$$
\begin{equation*}
\mathrm{Y}_{i}=\alpha^{\prime} \mathrm{X}_{i}+\rho \mathrm{S}_{i}+\eta_{i} \tag{4.1.6}
\end{equation*}
$$

where η_{i} is the compound error term, $A_{i}^{\prime} \gamma+v^{5}$ It's easy to use equation 4.1.6 to confirm directly that $\operatorname{Cov}\left(\mathrm{Y}_{i}, \tilde{z}_{i}\right)=\rho \operatorname{Cov}\left(\mathrm{s}_{i}, \tilde{z}_{i}\right)$ since \tilde{z}_{i} is uncorrelated with X_{i} by construction and with η_{i} by assumption. In Angrist and Krueger (1991), the instrument, z_{i}, is quarter of birth (or dummies indicating quarters of birth) and the covariates are dummies for year of birth, state of birth, and race.

4.1.1 Two-Stage Least Squares

The reduced-form equation, 4.1.4b, can be derived by substituting the first stage equation, 4.1.4a, into the causal relation of interest, 4.1.6, which is also called a "structural equation" in simultaneous equations language. We then have:

$$
\begin{align*}
\mathrm{Y}_{i} & =\alpha^{\prime} \mathrm{X}_{i}+\rho\left[\mathrm{X}_{i}^{\prime} \pi_{10}+\pi_{11} \mathrm{Z}_{i}+\xi_{1 i}\right]+\eta_{i} \tag{4.1.7}\\
& =\mathrm{X}_{i}^{\prime}\left[\alpha+\rho \pi_{10}\right]+\rho \pi_{11} \mathrm{Z}_{i}+\left[\rho \xi_{1 i}+\eta_{i}\right] \\
& =\mathrm{X}_{i}^{\prime} \pi_{20}+\pi_{21} \mathrm{Z}_{i}+\xi_{2 i}
\end{align*}
$$

[^3]where $\pi_{20} \equiv \alpha+\rho \pi_{10}, \pi_{21} \equiv \rho \pi_{11}$, and $\xi_{2 i} \equiv \rho \xi_{1 i}+\eta_{i}$ in equation 4.1.4b. Equation 4.1.7) again shows why $\rho=\frac{\pi_{21}}{\pi_{11}}$. Note also that a slight re-arrangement of 4.1.7) gives
\[

$$
\begin{equation*}
\mathrm{Y}_{i}=\alpha^{\prime} \mathrm{X}_{i}+\rho\left[\mathrm{X}_{i}^{\prime} \pi_{10}+\pi_{11} \mathrm{Z}_{i}\right]+\xi_{2 i} \tag{4.1.8}
\end{equation*}
$$

\]

where $\left[\mathrm{X}_{i}^{\prime} \pi_{10}+\pi_{11} Z_{i}\right]$ is the population fitted value from the first-stage regression of s_{i} on X_{i} and z_{i}. Because z_{i} and X_{i} are uncorrelated with the reduced-form error, $\xi_{2 i}$, the coefficient on $\left[\mathrm{X}_{i}^{\prime} \pi_{10}+\pi_{11} \mathrm{Z}_{i}\right.$] in the population regression of Y_{i} on X_{i} and $\left[\mathrm{X}_{i}^{\prime} \pi_{10}+\pi_{11} \mathrm{Z}_{i}\right]$ equals ρ.

In practice, of course, we almost always work with data from samples. Given a random sample, the first-stage fitted values in the population are consistently estimated by

$$
\hat{s}_{i}=\mathrm{X}_{i}^{\prime} \hat{\pi}_{10}+\hat{\pi}_{11} \mathrm{Z}_{i}
$$

where $\hat{\pi}_{10}$ and $\hat{\pi}_{11}$ are OLS estimates from equation 4.1.4a. The coefficient on \hat{s}_{i} in the regression of Y_{i} on X_{i} and \hat{s}_{i} is called the Two-Stage Least Squares (2SLS) estimator of ρ. In other words, 2SLS estimates can be constructed by OLS estimation of the "second-stage equation,"

$$
\begin{equation*}
\mathrm{Y}_{i}=\alpha^{\prime} \mathrm{X}_{i}+\rho \hat{s}_{i}+\left[\eta_{i}+\rho\left(\mathrm{S}_{i}-\hat{s}_{i}\right)\right] \tag{4.1.9}
\end{equation*}
$$

This is called 2SLS because it can be done in two steps, the first estimating \hat{s}_{i} using equation 4.1.4a, and the second estimating equation 4.1.9. The resulting estimator is consistent for ρ because (a) first-stage estimates are consistent; and, (b) the covariates, X_{i}, and instruments, z_{i}, are uncorrelated with both η_{i} and $\left(\mathrm{S}_{i}-\hat{s}_{i}\right)$.

The 2SLS name notwithstanding, we don't usually construct 2SLS estimates in two-steps. For one thing, the resulting standard errors are wrong, as we discuss later. Typically, we let specialized software routines (such as are available in SAS or Stata) do the calculation for us. This gets the standard errors right and helps to avoid other mistakes (see Section 4.6.1, below). Still, the fact that the 2SLS estimator can be computed by a sequence of OLS regressions is one way to remember why it works. Intuitively, conditional on covariates, 2SLS retains only the variation in S_{i} that is generated by quasi-experimental variation, i.e., generated by the instrument, z_{i}.

2SLS is a many-splendored thing. For one, it is an instrumental variables estimator: the 2SLS estimate of ρ in 4.1.9 is the sample analog of $\frac{\operatorname{Cov}\left(\mathrm{Y}_{i}, \hat{s}_{i}^{*}\right)}{\operatorname{Cov}\left(\mathrm{S}_{i}, \hat{s}_{i}^{*}\right)}$, where \hat{s}_{i}^{*} is the residual from a regression of \hat{s}_{i} on X_{i}. This follows from the multivariate regression anatomy formula and the fact that $\operatorname{Cov}\left(\mathrm{s}_{i}, \hat{s}_{i}^{*}\right)=V\left(\hat{s}_{i}^{*}\right)$. It is also easy to show that, in a model with a single endogenous variable and a single instrument, the 2SLS estimator is the same as the corresponding ILS estimator ${ }^{6}$

[^4]The link between 2SLS and IV warrants a bit more elaboration in the multi-instrument case. Assuming each instrument captures the same causal effect (a strong assumption that is relaxed below), we might want to combine these alternative IV estimates into a single more precise estimate. In models with multiple instruments, 2SLS provides just such a linear combination by combining multiple instruments into a single instrument. Suppose, for example, we have three instrumental variables, $\mathrm{z}_{1 i}, \mathrm{z}_{2 i}$, and $\mathrm{z}_{3 i}$. In the Angrist and Krueger (1991) application, these are dummies for first, second, and third-quarter births. The first-stage equation then becomes

$$
\begin{equation*}
\mathrm{S}_{i}=\mathrm{X}_{i}^{\prime} \pi_{10}+\pi_{11} \mathrm{Z}_{1 i}+\pi_{12} \mathrm{Z}_{2 i}+\pi_{13} \mathrm{Z}_{3 i}+\xi_{1 i} \tag{4.1.10a}
\end{equation*}
$$

while the 2SLS second stage is the same as 4.1.9, except that the fitted values are from 4.1.10a instead of 4.1.4a). The IV interpretation of this 2SLS estimator is the same as before: the instrument is the residual from a regression of first-stage fitted values on covariates. The exclusion restriction in this case is the claim that all of the quarter of birth dummies in 4.1.10a are uncorrelated with η_{i} in equation equation 4.1.6).

The results of 2SLS estimation of a schooling equation using three quarter-of-birth dummies, as well as other interactions, are shown in Table 4.1.1, which reports OLS and 2SLS estimates of models similar to those estimated by Angrist and Krueger (1991). Each column in the table contains OLS and 2SLS estimates of ρ from an equation like 4.1.6, estimated with different combinations of instruments and control variables. The OLS estimate in column 1 is from a regression of log wages with no control variables, while the OLS estimates in column 2 are from a model adding dummies for year of birth and state of birth as control variables. In both cases, the estimated return to schooling is around . 075 .

[^5]Table 4.1.1: 2SLS estimates of the economic returns to schooling

	OLS		2SLS					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Years of education	$\begin{gathered} 0.075 \\ (0.0004) \end{gathered}$	$\begin{gathered} 0.072 \\ (0.0004) \end{gathered}$	$\begin{gathered} 0.103 \\ (0.024) \end{gathered}$	$\begin{gathered} 0.112 \\ (0.021) \end{gathered}$	$\begin{gathered} 0.106 \\ (0.026) \end{gathered}$	$\begin{gathered} 0.108 \\ (0.019) \end{gathered}$	$\begin{gathered} 0.089 \\ (0.016) \end{gathered}$	$\begin{gathered} 0.061 \\ (0.031) \end{gathered}$
Covariates: Age (in quarters) Age (in quarters) squared 9 year of birth dummies 50 state of birth dummies		$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$			$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$
Instruments:			dummy for $\mathrm{QOB}=1$	$\begin{aligned} & \text { dummy } \\ & \text { for } \\ & \text { QOB }=1 \\ & \text { or } \\ & \text { QOB }=2 \end{aligned}$	dummy for QOB=1	full set of QOB dummies	full set of QOB dummies int. with year of birth dummies	full set of QOB dummies int. with year of birth dummies

Notes: The table reports OLS and 2SLS estimates of the returns to schooling using the the Angrist and Krueger (1991) 1980
Census sample. This sample includes native-born men, born 1930-1939, with positive earnings and non-allocated values for
key variables. The sample size is 329,509 . Robust standard errors are reported in parentheses.

The first pair of IV estimates, reported in columns 3 and 4, are from models without controls. The instrument used to construct the estimates in column 1 is a single dummy for first quarter births, while the instruments used to construct the estimates in column 2 are a pair of dummies indicating first and second quarter births. The standard error estimates range from $.10-.11$. The results from models including year of birth and state of birth dummies as control variables are similar, not surprisingly, since quarter of birth is not closely related to either of these controls. Overall, the 2 SLS estimates are mostly a bit larger than the corresponding OLS estimates. This suggests that the observed associated between schooling and earnings is not driven by omitted variables like ability and family background.

Column 7 in Table 4.1.1 shows the results of adding interaction terms to the instrument list. In particular, each specification adds interaction with 9 dummies for year of birth (the sample includes cohorts born 193039), for a total of 30 excluded instruments. The first stage equation becomes

$$
\begin{align*}
\mathrm{s}_{i}= & \mathrm{X}_{i}^{\prime} \pi_{10}+\pi_{11} \mathrm{Z}_{1 i}+\pi_{12} \mathrm{Z}_{2 i}+\pi_{13} \mathrm{Z}_{3 i} \tag{4.1.10b}\\
& +\sum_{j}\left(\mathrm{~B}_{i j} \mathrm{Z}_{1 i}\right) \kappa_{1 j}+\sum_{j}\left(\mathrm{~B}_{i j} \mathrm{Z}_{2 i}\right) \kappa_{2 j}+\sum_{j}\left(\mathrm{~B}_{i j} \mathrm{Z}_{3 i}\right) \kappa_{3 j}+\xi_{1 i}
\end{align*}
$$

where $\mathrm{B}_{i j}$ is a dummy equal to one if individual i was born in year j for j equal to $1931-39$. The coefficients $\kappa_{1 j}, \kappa_{2 j}, \kappa_{3 j}$ are the corresponding year-of-birth interactions. These interaction terms capture differences in the relation between quarter-of-birth and schooling across cohorts. The rationale for adding these interaction terms is an increase in precision that comes from increasing the first-stage R^{2}, which goes up because the quarter of birth pattern in schooling differs across cohorts. In this example, the addition of interaction terms to the instrument list leads to a modest gain in precision; the standard error declines from . 0194 to .01617

The last 2SLS model reported in Table 4.1.1 includes controls for linear and quadratic terms in age-inquarters in the list of covariates, X_{i}. In other words, someone who was born in the first quarter of 1930 is recorded as being 50 years old on census day (April 1), 1980, while someone born in the fourth quarter is recorded as being 49.25 years old. This finely coded age variable, entered into the model with a linear and quadratic term, provides a partial control for the fact that small differences age may be an omitted variable that confounds the quarter-of-birth identification strategy. As long as the effects of age are similarly smooth, the quadratic age-in-quarters model will pick them up.

This variation in the 2SLS set-up illustrates the inter-play between identification and estimation. For the 2 SLS procedure to work, there must be some variation in the first-stage fitted values conditional on whatever control variables (covariates) are included in the model. If the first-stage fitted values are a linear combination of the included covariates, then the 2SLS estimate simply does not exist. In equation 4.1.9) this

[^6]is manifest by perfect multicollinearity. 2SLS estimates with quadratic age exist. But the variability "left over" in the first-stage fitted values is reduced when the covariates include variables like age in quarters, that are closely related to the instruments (quarter of birth dummies). Because this variability is the primary determinant of 2SLS standard errors, the estimate in column 8 is markedly less precise than that in column 7 , though it is still close to the corresponding OLS estimate.

Recap of IV and 2SLS Lingo

As we've seen, the endogenous variables are the dependent variable and the independent variable(s) to be instrumented; in a simultaneous equations model, endogenous variables are determined by solving a system of stochastic linear equations. To treat an independent variable as endogenous is to instrument it, i.e., to replace it with fitted values in the second stage of a 2SLS procedure. The independent endogenous variable in the Angrist and Krueger (1991) study is schooling. The exogenous variables include the exogenous covariates that are not instrumented and the instruments themselves. In a simultaneous equations model, exogenous variables are determined outside the system. The exogenous covariates in the Angrist and Krueger (1991) study are dummies for year of birth and state of birth. We think of exogenous covariates as controls. 2SLS aficionados live in a world of mutually exclusive labels: in any empirical study involving instrumental variables, the random variables to be studied are either dependent variables, independent endogenous variables, instrumental variables, or exogenous covariates. Sometimes we shorten this to: dependent and endogenous variables, instruments and covariates (fudging the fact that the dependent variable is also endogenous in a traditional SEM).

4.1.2 The Wald Estimator

The simplest IV estimator uses a single binary (0-1) instrument to estimate a model with one endogenous regressor and no covariates. Without covariates, the causal regression model is

$$
\begin{equation*}
\mathrm{Y}_{i}=\alpha+\rho \mathrm{S}_{i}+\eta_{i}, \tag{4.1.11}
\end{equation*}
$$

where η_{i} and s_{i} may be correlated. Given the further simplification that z_{i} is a dummy variable that equals 1 with probability p, we can easily show that

$$
\operatorname{Cov}\left(\mathrm{Y}_{i}, \mathrm{Z}_{i}\right)=\left\{E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=1\right]-E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=0\right]\right\} p(1-p),
$$

with an analogous formula for $\operatorname{Cov}\left(\mathrm{S}_{i}, \mathrm{Z}_{i}\right)$. It therefore follows that

$$
\begin{equation*}
\rho=\frac{E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=1\right]-E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=0\right]}{E\left[\mathrm{~s}_{i} \mid \mathrm{Z}_{i}=1\right]-E\left[\mathrm{~s}_{i} \mid \mathrm{Z}_{i}=0\right]} . \tag{4.1.12}
\end{equation*}
$$

A direct route to this result uses (4.1.11) and the fact that $E\left[\eta_{i} \mid z_{i}\right]=0$, so we have

$$
\begin{equation*}
E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}\right]=\alpha+\rho E\left[\mathrm{~s}_{i} \mid \mathrm{z}_{i}\right] \tag{4.1.13}
\end{equation*}
$$

Solving this equation for ρ produces 4.1.12.
Equation 4.1.12 is the population analog of the landmark Wald (1940) estimator for a bivariate regression with mismeasured regressors ${ }^{8}$ The Wald estimator is the sample analog of this expression. In our context, the Wald formula provides an appealingly transparent implementation of the IV strategy for the elimination of omitted variables bias. The principal claim that motivates IV estimation of causal effects is that the only reason for any relation between the dependent variable and the instrument is the effect of the instrument on the causal variable of interest. In the context of a binary instrument, it therefore seems natural to divide or rescale - the reduced-form difference in means by the corresponding first-stage difference in means.

The Angrist and Krueger (1991) study using quarter of birth to estimate the economic returns to schooling shows the Wald estimator in action. Table 4.1 .2 displays the ingredients behind a Wald estimate constructed using the 1980 census. The difference in earnings between men born in the first and second halves of the year is -.01349 (s.e. $=.00337$), while the corresponding difference in schooling is -.1514 . The ratio of these two differences is a Wald estimate of the economic value of schooling in per-year terms. This comes out to be .0891 (s.e. $=.021$). Not surprisingly, this estimate is not too different from the 2SLS estimates in Table 4.1.1. The reason we should expect the Wald and 2SLS estimates to be similar is that they are both constructed from the same information: differences in earnings by season of birth.

The Angrist (1990) study of the effects of Vietnam-era military service on the earnings of veterans also shows the Wald estimator in action. In the 1960s and early 1970s, young men were at risk of being drafted for military service. Concerns about the fairness of US conscription policy led to the institution of a draft lottery in 1970 that was used to determine priority for conscription. A promising instrumental variable for Vietnam veteran status is therefore draft-eligibility, since this was determined by a lottery over birthdays. Specifically, in each year from 1970 to 1972, random sequence numbers (RSNs) were randomly assigned to each birth date in cohorts of 19-year-olds. Men with lottery numbers below an eligibility ceiling were eligible for the draft, while men with numbers above the ceiling could not be drafted. In practice, many draft-eligible men were still exempted from service for health or other reasons, while many men who were draft-exempt nevertheless volunteered for service. So veteran status was not completely determined by randomized draft-eligibility,

[^7]$\xlongequal[(1)]{\text { Table 4.1.2: Wald estimates of the returns to schooling using quarter of birth instrument }}$

	Born in the 1st or 2nd quarter of year	(2) Born in the 3rd or 4th quarter of year	Difference (std. error) $(1)-(2)$
\ln (weekly wage)	5.8916	5.9051	-0.01349
Years of education	12.6881	12.8394	$-0.00337)$
		(0.0162)	
Wald estimate of return to education		0.0891	
OLS estimate of			
return to education		(0.0210)	

Notes: Adapted from a re-analysis of Angrist and Krueger (1991) by Angrist and Imbens (1995). The sample includes native-born men with positive earnings from the 1930-39 birth cohorts in the 1980 Census 5 percent file. The sample size is 329,509.
but draft-eligibility provides a binary instrument highly correlated with Vietnam-era veteran status.
For white men who were at risk of being drafted in the 1970 draft lottery, draft-eligibility is clearly associated with lower earnings in years after the lottery. This is documented in Table 4.1.3, which reports the effect of randomized draft-eligibility status on average Social Security-taxable earnings in column 2. column 1 shows average annual earnings for purposes of comparison. For men born in 1950, there are significant negative effects of eligibility status on earnings in 1971, when these men were mostly just beginning their military service, and, perhaps more surprisingly, in 1981, ten years later. In contrast, there is no evidence of an association between draft-eligibility status and earnings in 1969, the year the lottery drawing for men born in 1950 was held but before anyone born in 1950 was actually drafted.

Because eligibility status was randomly assigned, the claim that the estimates in column 2 represent the effect of draft-eligibility on earnings seems uncontroversial. The information required to go from drafteligibility effects to veteran-status effects is the denominator of the Wald estimator, which is the effect of draft-eligibility on the probability of serving in the military. This information is reported in column 3 of Table 4.1.3, which shows that draft-eligible men were almost 16 percentage points more likely to have served in the Vietnam era. The Wald estimate of the effect of military service on 1981 earnings, reported in column 4, amounts to about 15 percent of the mean. Effects were even larger in 1971 (in percentage terms), when affected soldiers were still in the army.

An important feature of the Wald/IV estimator is that the identifying assumptions are easy to assess and

Table 4.1.3: Wald estimates of the effects of military service on the earnings of white men born in 1950

Earnings year	Earnings		Veteran Status		Wald Estimate of Veteran Effect
	Mean	Eligibility Effect	Mean	Eligibility Effect	
	(1)	(2)	(3)	(4)	(5)
1981	16,461	$\begin{aligned} & -435.8 \\ & (210.5) \end{aligned}$	0.267	$\begin{gathered} 0.159 \\ (0.040) \end{gathered}$	$\begin{aligned} & -2,741 \\ & (1,324) \end{aligned}$
1971	3,338	$\begin{gathered} -325.9 \\ (46.6) \end{gathered}$			$\begin{aligned} & -2050 \\ & (293) \end{aligned}$
1969	2,299	$\begin{gathered} -2.0 \\ (34.5) \end{gathered}$			

Notes: Adapted from Angrist (1990), Tables 2 and 3. Standard errors are shown in parentheses. Earnings data are from Social Security administrative records. Figures are in nominal dollars. Veteran status data are from the Survey of Program Participation. There are about 13,500 individuals in the sample.
interpret. Suppose D_{i} denotes Vietnam-era veteran status and z_{i} indicates draft-eligibility. The fundamental claim justifying our interpretation of the Wald estimator as capturing the causal effect of D_{i} is that the only reason why $E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}\right]$ changes as Z_{i} changes is the variation in $E\left[\mathrm{D}_{i} \mid \mathrm{Z}_{i}\right]$. A simple check on this is to look for an association between Z_{i} and personal characteristics that should not be affected by D_{i}, for example, age, race, sex, or any other characteristic that was determined before D_{i} was determined. Another useful check is to look for an association between the instrument and outcomes in samples where there is no relationship between D_{i} and z_{i}. If the only reason for draft-eligibility affects on earnings is veteran status, then drafteligibility effects on earnings should be zero in samples where draft-eligibility status is unrelated to veteran status.

This idea is illustrated in the Angrist (1990) study of the draft lottery by looking at 1969 earnings, an estimate repeated in the last row of Table 4.1.3. It's comforting that the draft-eligibility treatment effect on 1969 earnings is zero since 1969 earnings predate the 1970 draft lottery. A second variation on this idea looks at the cohort of men born in 1953. Although there was a lottery drawing which assigned RSNs to the 1953 birth cohort in February of 1972, no one born in 1953 was actually drafted (the draft officially ended in July of 1973). The first-stage relationship between draft-eligibility and veteran status for men born in 1953 (defined using the 1952 lottery cutoff of 95) therefore shows only a small difference in the probability of serving by eligibility status. Importantly, there is also no significant relationship between earnings and draft-eligibility status for men born in 1953, a result that supports the claim that the only reason for draft-eligibility effects is military service.

We conclude the discussion of Wald estimators with a set of IV estimates of the effect of family size on mothers' employment and work. Like the schooling and military service studies, these estimates are used for illustration elsewhere in the book. The relationship between fertility and labor supply has long been of interest to labor economists, while the case for omitted variables bias in this context is clear: mothers with weak labor force attachment or low earnings potential may be more likely to have children than mothers with strong labor force attachment or high earnings potential. This makes the observed association between family size and employment hard to interpret since mothers who have big families may have worked less anyway. Angrist and Evans (1998) solve this omitted-variables problem using two instrumental variables, both of which lend themselves to Wald-type estimation strategies.

The first Wald estimator uses multiple births, an identification strategy for the effects of family size pioneered by Rosenzweig and Wolpin (1980). The twins instrument in Angrist and Evans (1998) is a dummy for a multiple third birth in a sample of mothers with at least two children. The twins first-stage is .625 , an estimate reported in column 3 of Table 4.1.4. This means that 37.5 percent of mothers with two or more children would have had a third birth anyway; a multiple third birth increases this proportion to 1 . The twins instrument rests on the idea that the occurrence of a multiple birth is essentially random, unrelated to potential outcomes or demographic characteristics.

The second Wald estimator in Table 4.1.4 uses sibling sex composition, an instrument motivated by the fact that American parents with two children are much more likely to have a third child if the first two are same-sex than if the sex-composition is mixed. This is illustrated in column 5 of Table 4.1.4, which shows that parents of same-sex sibling birth are 6.7 percentage points more likely to have a third birth (the probability of a third birth among parents with a mixed-sex sibship is .38). The same-sex instrument is based on the claim that sibling sex composition is essentially random and affects family labor supply solely by increasing fertility.

Twins and sex-composition instruments both suggest that the birth of a third child has a large effect on employment rates and on weeks and hours worked. Wald estimates using twins instruments show a precisely-estimate employment reduction of about .08 , while weeks worked fall by 3.8 and hours per week fall by 3.4. These results, which appear in column 4 of Table 4.1.4 are smaller in absolute value than the corresponding OLS estimates reported in column 2. This suggests the latter are exaggerated by selection bias. Interestingly, the Wald estimates constructed using a same-sex dummy, reported in column 6, are larger than the twins estimates. The juxtaposition of twins and sex-composition instruments in Table 4.1.4 suggests that different instruments need not generate similar estimates of causal effects even if both are valid. We expand on this important point in Section4.4. For now, however, we stick with a constant-effects framework.
Table 4.1.4: Wald estimates of labor supply effects

Dependent variable	Mean (1)	OLS (2)	IV Estimates using:			
				wins	Sex-composition	
			First stage (3)	Wald estimates (4)	First stage (5)	Wald estimates (6)
Employment	0.528	$\begin{gathered} \hline-0.167 \\ (0.002) \end{gathered}$	$\begin{gathered} \hline 0.625 \\ (0.011) \end{gathered}$	$\begin{aligned} & \hline-0.083 \\ & (0.017) \end{aligned}$	$\begin{gathered} \hline 0.067 \\ (0.002) \end{gathered}$	$\begin{aligned} & \hline-0.135 \\ & (0.029) \end{aligned}$
Weeks worked	19.0	$\begin{gathered} -8.05 \\ (0.09) \end{gathered}$		$\begin{gathered} -3.83 \\ (0.758) \end{gathered}$		$\begin{aligned} & -6.23 \\ & (1.29) \end{aligned}$
Hours/week	16.7	$\begin{gathered} -6.02 \\ (0.08) \\ \hline \end{gathered}$	"	$\begin{gathered} -3.39 \\ (0.637) \\ \hline \end{gathered}$		$\begin{gathered} -5.54 \\ (1.08) \\ \hline \end{gathered}$
Note: The table reports OLS and Wald estimates of the effects of a third birth on labor supply using twins and sex-composition instruments. Data are from the Angrist and Evans (1998) extract						
including married women aged 21-35 with at least two children in the 1980 Census. OLS models						
include controls for mother's age, age at first birth, dummies for the sex of first and second births,						

4.1.3 Grouped Data and 2SLS

The Wald estimator is the mother of all instrumental variables estimators because more complicated 2SLS estimators can typically be constructed from an underlying set of Wald estimators. The link between Wald and 2SLS is grouped-data: 2SLS using dummy instruments is the same thing as GLS on a set of group means. GLS in turn can be understood as a linear combination of all the Wald estimators that can be constructed from pairs of means. The generality of this link might appear to be limited by the presumption that the instruments at hand are dummies. Not all instrumental variables are dummies, or even discrete, but this is not really important. For one thing, many credible instruments can be thought of as defining categories, such as quarter of birth. Moreover, instrumental variables that appear more continuous (such as draft lottery numbers, which range from 1-365) can usually be grouped without much loss of information (for example, a single dummy for draft-eligibility status, or dummies for groups of 25 lottery numbers).9

To explain the Wald/grouping/2SLS nexus more fully, we stick with the draft-lottery study. Earlier we noted that draft-eligibility is a promising instrument for Vietnam-era veteran status. The draft-eligibility ceilings were RSN 195 for men born in 1950, RSN 125 for men born in 1951, and RSN 95 for men born in 1952. In practice, however, there is a richer link between draft lottery numbers (which we'll call R_{i}, short for RSN) and veteran status (D_{i}) than draft-eligibility status alone. Although men with numbers above the eligibility ceiling were not drafted, the ceiling was unknown in advance. Some men therefore volunteered in the hope of serving under better terms and gaining some control over the timing of their service. The pressure to become a draft-induced volunteer was high for men with low lottery numbers, but low for men with high numbers. As a result, there is variation in $P\left[\mathrm{D}_{i}=1 \mid \mathrm{R}_{i}\right]$ even for values strictly above or below the draft-eligibility cutoff. For example, men born in 1950 with lottery numbers $200-225$ were more likely to serve than those with lottery numbers $226-250$, though ultimately no one in either group was drafted.

The Wald estimator using draft-eligibility as an instrument for men born in 1950 compares the earnings of men with $\mathrm{R}_{i}<195$ to the earnings of men with $\mathrm{R}_{i}>195$. But the previous discussion suggests the possibility of many more comparisons, for example men with $\mathrm{R}_{i} \leq 25$ vs. men with $\mathrm{R}_{i} \in[26-50]$; men with $\mathrm{R}_{i} \in[51-75]$ vs. men with $\mathrm{R}_{i} \in[76-100]$, and so on, until these 25 -number intervals are exhausted. We might also make the intervals finer, comparing, say, men in 5 -number or single-number intervals instead of 25 -number intervals. The result of this expansion in the set of comparisons is a set of Wald estimators. These sets are complete in that the intervals partition the support of the underlying instrument, while the individual estimators are linearly independent in the sense that their numerators are linearly independent. Finally, each of these Wald estimators consistently estimates the same causal effect, assumed here to be constant, as long as R_{i} is independent of potential outcomes and correlated with veteran status (i.e., the Wald denominators are not zero).

[^8]The possibility of constructing multiple Wald estimators for the same causal effect naturally raises the question of what to do with all of them. We would like to come up with a single estimate that somehow combines the information in the individual Wald estimates efficiently. As it turns out, the most efficient linear combination of a full set of linearly independent Wald estimates is produced by fitting a line through the group means used to construct these estimates.

The grouped data estimator can be motivated directly as follows. As in 4.1.11, we work with a bivariate constant-effects model, which in this case can be written

$$
\begin{equation*}
\mathrm{Y}_{i}=\alpha+\rho \mathrm{D}_{i}+\eta_{i} \tag{4.1.14}
\end{equation*}
$$

where $\rho=\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}$ is the causal effect of interest and $\mathrm{Y}_{0 i}=\alpha+\eta_{i}$. Because R_{i} was randomly assigned and lottery numbers are assumed to have no effect on earnings other than through veteran status, $E\left[\eta_{i} \mid \mathrm{R}_{i}\right]=0$. It therefore follows that

$$
\begin{equation*}
E\left[\mathrm{Y}_{i} \mid \mathrm{R}_{i}\right]=\alpha+\rho P\left[\mathrm{D}_{i}=1 \mid \mathrm{R}_{i}\right], \tag{4.1.15}
\end{equation*}
$$

since $P\left[\mathrm{D}_{i}=1 \mid \mathrm{R}_{i}\right]=E\left[\mathrm{D}_{i} \mid \mathrm{R}_{i}\right]$. In other words, the slope of the line connecting average earnings given lottery number with the average probability of service by lottery number is equal to the effect of military service, ρ. This is in spite of the fact that the regression Y_{i} on D_{i}-in this case, the difference in means by veteran status-almost certainly differs from ρ since $\mathrm{Y}_{0 i}$ and D_{i} are likely to be correlated.

Equation 4.1.15 suggests an estimation strategy based on fitting a line to the sample analog of $E\left[\mathrm{Y}_{i} \mid \mathrm{R}_{i}\right]$ and $P\left[\mathrm{D}_{i}=1 \mid \mathrm{R}_{i}\right]$. Suppose that R_{i} takes on values $j=1, \ldots, \mathrm{~J}$. In principle, j might run from 1 to 365 , but in Angrist (1990), lottery-number information was aggregated to 69 five-number intervals, plus a 70th for numbers $346-365$. We can therefore think of R_{i} as running from 1 to 70 . Let \bar{y}_{j} and \hat{p}_{j} denote estimates of $E\left[\mathrm{Y}_{i} \mid \mathrm{R}_{i}=j\right]$ and $P\left[\mathrm{D}_{i}=1 \mid \mathrm{R}_{i}=j\right]$, while $\bar{\eta}_{j}$ denotes the average error in 4.1.14). Because sample moments converge to population moments it follows that OLS estimates of ρ in the grouped equation

$$
\begin{equation*}
\bar{y}_{j}=\alpha+\rho \hat{p}_{j}+\bar{\eta}_{j} \tag{4.1.16}
\end{equation*}
$$

are consistent. In practice, however, GLS may be preferable since a grouped equation is heteroskedastic with a known variance structure. The efficient GLS estimator for grouped data in a constant-effects linear model is weighted least squares, weighted by the variance of $\bar{\eta}_{j}$ (see, e.g., Prais and Aitchison, 1954 or Wooldridge, 2006). Assuming the microdata residual is homoskedastic with variance σ_{η}^{2}, this variance is $\frac{\sigma_{\eta}^{2}}{n_{j}}$, where n_{j} is the group size.

The GLS (or weighted least squares) estimator of ρ in equation 4.1.16) is especially important in this context for two reasons. First, the GLS slope estimate constructed from J grouped observations is an asymptotically efficient linear combination of any full set of $J-1$ linearly independent Wald estimators
(Angrist, 1991). This can be seen without any mathematics: GLS and any linear combination of pairwise Wald estimators are both linear combinations of the grouped dependent variable. Moreover, GLS is the asymptotically efficient linear estimator for grouped data. Therefore we can conclude that there is no better (i.e., asymptotically more efficient) linear combination of Wald estimators than GLS (again, a maintained assumption here is that ρ is constant). The formula for constructing the GLS estimator from a full set of linearly independent Wald estimators appears in Angrist (1988).

Second, just as each Wald estimator is also an IV estimator, the GLS (weighted least squares) estimator of equation 4.1.16 is also 2SLS. The instruments in this case are a full set of dummies to indicate each lottery-number cell. To see why, define the set of dummy instruments $Z_{i} \equiv\left\{r_{j i}=1\left[\mathrm{R}_{i}=j\right] ; j=1, \ldots J-1\right\}$. Now, consider the first stage regression of D_{i} on Z_{i} plus a constant. Since this first stage is saturated, the fitted values will be the sample conditional means, \hat{p}_{j}, repeated n_{j} times for each j. The second stage slope estimate is therefore exactly the same as weighted least squares estimation of the grouped equation, 4.1.16), weighted by the cell size, n_{j}.

The connection between grouped-data and 2SLS is of both conceptual and practical importance. On the conceptual side, any 2SLS estimator using a set of dummy instruments can be understood as a linear combination of all the Wald estimators generated by these instruments one at a time. The Wald estimator in turn provides a simple framework used later in this chapter to interpret IV estimates in the much more realistic world of heterogeneous potential outcomes.

Although not all instruments are inherently discrete and therefore immediately amenable to a Wald or grouped-data interpretation, many are. Examples include the draft lottery number, quarter of birth, twins, and sibling-sex composition instruments we've already discussed. See also the recent studies by Bennedsen, et al., 2007, and Ananat and Michaels, 2008, both of which use dummies for male first births as instruments. Moreover, instruments that have a continuous flavor can often be fruitfully turned into discrete variables. For example, Angrist, Graddy and Imbens (2000) group continuous weather-based instruments into 3 dummy variables, stormy, mixed, and clear, which they then use to estimate the demand fish. This dummy-variable parameterization seems to capture the main features of the relationship between weather conditions and the price of fish ${ }^{10}$

On the practical side, the grouped-data equivalent of 2 SLS gives us a simple tool that can be used to explain and evaluate any IV strategy. In the case of the draft lottery, for example, the grouped model embodies the assumption that the only reason average earnings vary with lottery numbers is the variation in probability of service across lottery-number groups. If the underlying causal relation is linear with constant effects, then equation 4.1.16) should fit the group means well, something we can assess by inspection and, as discussed in the next section, with the machinery of formal statistical inference.

[^9]Sometimes labor economists refer to grouped-data plots for discrete instruments as Visual Instrumental Variables (VIV) ${ }^{11}$ An example appears in Angrist (1990), reproduced here as Figure 4.1.2. This figure shows the relationship between average earnings in 5 -number RSN cells and the probability of service in these cells, for the 1981-84 earnings of white men born 1950-53. The slope of the line through these points is an IV estimate of the earnings loss due to military service, in this case about $\$ 2,400$, not very different from the Wald estimates discussed earlier but with a lower standard error (in this case, about \$800).

Figure 4.1.2: The relationship between average earnings and the probability of military service (from Angrist 1990). This is a VIV plot of average 1981-84 earnings by cohort and groups of five consecutive draft lottery numbers against conditional probabilities of veteran status in the same cells. The sample includes white men born 1950-53. Plotted points consist of average residuals (over four years of earnings) from regressions on period and cohort effects. The slope of the least-squares regression line drawn through the points is $-2,384$, with a standard error of 778 .

4.2 Asymptotic 2SLS Inference

4.2.1 The Limiting Distribution of the 2SLS Coefficient Vector

We can derive the limiting distribution of the 2SLS coefficient vector using an argument similar to that used in Section 3.1.3 for OLS. In this case, let $V_{i} \equiv\left[\begin{array}{ll}\mathrm{X}_{i}^{\prime} & \hat{s}_{i}\end{array}\right]^{\prime}$ denote the vector of regressors in the 2SLS second

[^10]stage, equation 4.1.9. The 2SLS estimator can then be written
$$
\hat{\Gamma}_{2 S L S} \equiv\left[\sum_{i} V_{i} V_{i}^{\prime}\right]^{-1} \sum_{i} V_{i} \mathrm{Y}_{i}
$$

where $\Gamma \equiv\left[\begin{array}{ll}\alpha^{\prime} & \rho\end{array}\right]^{\prime}$ is the corresponding coefficient vector. Note that

$$
\begin{align*}
\hat{\Gamma}_{2 S L S} & =\Gamma+\left[\sum_{i} V_{i} V_{i}^{\prime}\right]^{-1} \sum_{i} V_{i}\left[\eta_{i}+\rho\left(\mathrm{s}_{i}-\hat{s}_{i}\right)\right] \\
& =\Gamma+\left[\sum_{i} V_{i} V_{i}^{\prime}\right]^{-1} \sum_{i} V_{i} \eta_{i} \tag{4.2.1}
\end{align*}
$$

where the second equality comes from the fact that the first-stage residuals, $\left(\mathrm{s}_{i}-\hat{s}_{i}\right)$, are orthogonal to V_{i} in the sample. The limiting distribution of the 2SLS coefficient vector is therefore the limiting distribution of $\left[\sum_{i} V_{i} V_{i}^{\prime}\right]^{-1} \sum_{i} V_{i} \eta_{i}$. This quantity is a little harder to work with than the corresponding OLS quantity, because the regressors in this case involve estimated fitted values, \hat{s}_{i}. A Slutsky-type argument shows, however, that we get the same limiting distribution replacing estimated fitted values with the corresponding population fitted values (i.e., replacing \hat{s}_{i} with $\left[\mathrm{X}_{i}^{\prime} \pi_{10}+\pi_{11} Z_{i}\right]$). It therefore follows that $\hat{\Gamma}_{2 S L S}$ has an asymptotically normal distribution, with probability limit Γ, and a covariance matrix estimated consistently by $\left[\sum_{i} V_{i} V_{i}^{\prime}\right]^{-1}\left[\sum_{i} V_{i} V_{i}^{\prime} \eta_{i}^{2}\right]\left[\sum_{i} V_{i} V_{i}^{\prime}\right]^{-1}$. This is a sandwich formula like the one for OLS standard errors (White, 1982). As with OLS, if η_{i} is conditionally homoskedastic given covariates and instruments, the consistent covariance matrix estimator simplifies to $\left[\sum_{i} V_{i} V_{i}^{\prime}\right]^{-1} \sigma_{\eta}^{2}$.

There is little new here, but there is one tricky point. It seems natural to construct 2SLS estimates manually by first estimating the first stage 4.1.4a and then plugging the fitted values into equation 4.1.9 and estimating this by OLS. That's fine as far as the coefficient estimates go, but the resulting standard errors will be incorrect. Conventional regression software does not know that you are trying to construct a 2SLS estimate. The residual variance estimator that goes into the standard formulas will therefore be incorrect. When constructing standard errors, the software will estimate the residual variance of the equation you estimate by OLS in the second stage:

$$
\mathrm{Y}_{i}-\left[\alpha^{\prime} \mathrm{X}_{i}+\rho \hat{s}_{i}\right]=\left[\eta_{i}+\rho\left(\mathrm{S}_{i}-\hat{s}_{i}\right)\right]
$$

replacing the coefficients with the corresponding estimates. The correct residual variance estimator, however, uses the original endogenous regressor to construct residuals and not the first-stage fitted values, \hat{s}_{i}. In other words, the residual you want is $\mathrm{Y}_{i}-\left[\alpha^{\prime} \mathrm{X}_{i}+\rho \mathrm{S}_{i}\right]=\eta_{i}$, so as to consistently estimate σ_{η}^{2}, and not $\eta_{i}+\rho\left(\mathrm{S}_{i}-\hat{s}_{i}\right)$. Although this problem is easy to fix (you can construct the appropriate residual variance estimator in a separate calculation), software designed for 2SLS gets this right automatically, and may help
you avoid other common 2SLS mistakes.

4.2.2 Over-identification and the 2SLS Minimand ${ }^{\star}$

Constant-effects models with more instruments than endogenous regressors are said to be over-identified. Because there are more instruments than needed to identify the parameters of interest, these models impose a set of restrictions that can be evaluated as part of a process of specification testing. This process amounts to asking whether the line plotted in a VIV-type picture fits the relevant conditional means tightly enough given the precision with which the means are estimated. The details behind this useful idea are easiest to spell out using matrix notation and a traditional linear model.

Let $Z_{i} \equiv\left[\begin{array}{llll}\mathrm{X}_{i}^{\prime} & \mathrm{Z}_{1 i} & \ldots & \mathrm{Z}_{\mathrm{Q} i}\end{array}\right]^{\prime}$ denote the vector formed by concatenating the exogenous covariates and Q instrumental variables and let $W_{i} \equiv\left[\begin{array}{ll}\mathrm{X}_{i}^{\prime} & \mathrm{S}_{i}\end{array}\right]^{\prime}$ denote the vector formed by concatenating the covariates and the single endogenous variable of interest. In the quarter-of-birth paper, for example, the covariates are year-of-birth and state-of-birth dummies, the instruments are quarter-of-birth dummies, and the endogenous variable is schooling. The coefficient vector is still $\Gamma \equiv\left[\alpha^{\prime}, \rho\right]^{\prime}$, as in the previous subsection. The residuals for the causal model can be defined as a function of Γ using

$$
\eta_{i}(\Gamma) \equiv \mathrm{Y}_{i}-\Gamma^{\prime} W_{i}=\mathrm{Y}_{i}-\left[\alpha^{\prime} \mathrm{X}_{i}+\rho \mathrm{S}_{i}\right]
$$

This residual is assumed to be uncorrelated with the instrument vector, z_{i}. In other words, η_{i} satisfies the orthogonality condition,

$$
\begin{equation*}
E\left[\mathrm{Z}_{i} \eta_{i}(\Gamma)\right]=0 \tag{4.2.2}
\end{equation*}
$$

In any sample, however, this equation will not hold exactly because there are more moment conditions than there are elements of $\Gamma{ }^{12}$ The sample analog of 4.2 .2 is the sum over i,

$$
\begin{equation*}
\frac{1}{N} \sum Z_{i} \eta_{i}(\Gamma) \equiv m_{N}(\Gamma) \tag{4.2.3}
\end{equation*}
$$

2SLS can be understood as a generalized method of moments (GMM) estimator that chooses a value for Γ by making the sample analog of 4.2 .2 as close to zero as possible.

By the central limit theorem, the sample moment vector $\sqrt{N} m_{N}(\Gamma)$ has an asymptotic covariance matrix equal to $E\left[Z_{i} Z_{i}^{\prime} \eta_{i}(\Gamma)^{2}\right]$, a matrix we'll call Λ. Although somewhat intimidating at first blush, this is just a matrix of 4th moments, as in the sandwich formula used to construct robust standard errors, 3.1.7). As shown by Hansen (1982), the optimal GMM estimator based on 4.2.2 minimizes a quadratic form in the sample moment vector, $m_{N}(\hat{g})$, where \hat{g} is a candidate estimator of $\Gamma{ }^{13}$ The optimal weighting matrix in

[^11]the middle of the GMM quadratic form is Λ^{-1}. In practice, of course, Λ, is unknown and must be estimated. A feasible version of the GMM procedure uses a consistent estimator of Λ in the weighting matrix. Since the estimator using known and estimated Λ have the same limiting distribution, we'll ignore this distinction for now. The quadratic form to be minimized can therefore be written,
\[

$$
\begin{equation*}
J_{N}(\hat{g}) \equiv N m_{N}(\hat{g})^{\prime} \Lambda^{-1} m_{N}(\hat{g}), \tag{4.2.4}
\end{equation*}
$$

\]

where the N-term out front comes from \sqrt{N} normalization of the sample moments. As shown immediately below, when the residuals are conditionally homoskedastic, the minimizer of $J_{N}(\hat{g})$ is the 2SLS estimator. Without homoskedasticity, the GMM estimator that minimizes 4.2.4 is White's (1982) Two-Stage IV (a generalization of 2SLS) so that it makes sense to call $J_{N}(\hat{g})$ the "2SLS minimand".

Here are some of the details behind the GMM interpretation of 2SLS ${ }^{14}$. Conditional homoskedasticity means that

$$
E\left[Z_{i} Z_{i}^{\prime} \eta_{i}(\Gamma)^{2}\right]=E\left[Z_{i} Z_{i}^{\prime}\right] \sigma_{\eta}^{2}
$$

Substituting for Λ^{-1} and using Z, Y and W to denote sample data vectors and matrices, the quadratic form to be minimized becomes

$$
\begin{equation*}
J_{N}(\hat{g})=\left(N \sigma_{\eta}^{2}\right)^{-1} \times(\mathrm{Y}-W \hat{g})^{\prime} Z E\left[Z_{i} Z_{i}^{\prime}\right]^{-1} Z^{\prime}(\mathrm{Y}-W \hat{g}) . \tag{4.2.5}
\end{equation*}
$$

Finally, substituting the sample cross-product matrix $\left[\frac{Z^{\prime} Z}{N}\right]$ for $E\left[Z_{i} Z_{i}^{\prime}\right]$, we have

$$
\hat{J}_{N}(\hat{g})=\left(1 / \sigma_{\eta}^{2}\right) \times(\mathrm{Y}-W \hat{g})^{\prime} P_{Z}(\mathrm{Y}-W \hat{g})
$$

where $P_{Z}=Z\left(Z^{\prime} Z\right)^{-1} Z$. From here, we get the solution

$$
\hat{g}=\hat{\Gamma}_{2 S L S}=\left[W^{\prime} P_{Z} W\right]^{-1} W^{\prime} P_{Z} \mathrm{Y}
$$

Since the projection operator, P_{Z}, produces fitted values, and P_{Z} is an idempotent matrix, this can be seen to be the OLS estimator of the second-stage equation, 4.1.9, written in matrix notation. More generally, even without homoskedasticity we can obtain a feasible efficient 2SLS-type estimator by minimizing (4.2.4) and using a consistent estimator of $E\left[Z_{i} Z_{i}^{\prime} \eta_{i}(\hat{g})^{2}\right]$ to form $\hat{J}_{N}(\hat{g})$. Typically, we'd use the empirical fourth moments, $\sum Z_{i} Z_{i}^{\prime} \hat{\eta}_{i}^{2}$, where $\hat{\eta}_{i}$ is the regular 2SLS residual computed without worrying about heteroskedasticity (see, White, 1982, for distribution theory and other details).

[^12]The over-identification test statistic is given by the minimized 2SLS minimand. Intuitively, this statistic tells us whether the sample moment vector, $m_{N}(\hat{g})$, is close enough to zero for the assumption that $E\left[Z_{i} \eta_{i}\right]=$ 0 to be plausible. In particular, under the null hypothesis that the residuals and instruments are indeed orthogonal, the minimized $J_{N}(\hat{g})$ has a $\chi^{2}(\mathrm{Q}-1)$ distribution. We can therefore compare the empirical value of the 2 SLS minimand with chi-square tables in a formal testing procedure for $H_{0}: E\left[Z_{i} \eta_{i}\right]=0$.

For reasons that will soon become apparent, we're not often interested in over-identification per se. Our main interest is in the 2SLS minimand when the instruments are a full set of mutually exclusive dummy variables, as for the Wald estimators and grouped-data estimation strategies discussed above. In this important special case, the 2SLS becomes weighted least squares of a grouped equation like 4.1.16), while the 2SLS minimand is the relevant weighted sum of squares being minimized. To see this, note that projection on a full set of mutually exclusive dummy variables for an instrument that takes on J values produces an $N \times 1$ vector of fitted values equal to the J conditional means at each value of the instrument (included covariates are counted as instruments), each one of these n_{j} times, where n_{j} is the group size and $\sum n_{j}=N$. The cross product matrix $\left[Z^{\prime} Z\right]$ in this case is a $\mathrm{J} \times \mathrm{J}$ diagonal matrix with elements n_{j}. Simplifying, we then have

$$
\begin{equation*}
\hat{J}_{N}(\hat{g})=\left(1 / \sigma_{\eta}^{2}\right) \times \sum_{j} n_{j}\left(\bar{y}_{j}-\hat{g}^{\prime} \bar{W}_{j}\right)^{2} \tag{4.2.6}
\end{equation*}
$$

where \bar{W}_{j} is the sample mean of the rows of matrix W in group j. Thus, $\hat{J}_{N}(\hat{g})$ is the GLS weighted least squares minimand for estimation of the grouped regression: \bar{y}_{j} on \bar{W}_{j}. With a little bit more work (here we skip the details), we can similarly show that the efficient Two-Step IV procedure without homoskedasticity minimizes

$$
\begin{equation*}
\hat{J}_{N}(\hat{g})=\sum_{j}\left(\frac{n_{j}}{\sigma_{j}^{2}}\right)\left(\bar{y}_{j}-\hat{g}^{\prime} \bar{W}_{j}\right)^{2} \tag{4.2.7}
\end{equation*}
$$

where σ_{j}^{2} is the variance of η_{i} in group j. Estimation using 4.2 .7 is feasible because we can estimate σ_{j}^{2} in a first-step, say, using inefficient-but-still-consistent 2SLS that ignores heteroskedasticity. Efficient two-step IV estimators are constructed in Angrist (1990, 1991).

The GLS structure of the 2SLS minimand allows us to see the over-identification test statistic for dummy instruments as a simple measure of the goodness of fit of the line connecting \bar{y}_{j} and \bar{W}_{j}. In other words, this is the chi-square goodness of fit statistic for the line in a VIV plot like figure 4.1.2. The chi-square degrees of freedom parameter is given by the difference between the number of values taken on by the instrument and the number of parameters being estimated ${ }^{15}$.

Like the various paths leading to the 2SLS estimator, there are many roads to the test-statistic, 4.2.7), as well. Here are two further paths that are worth knowing. First, the test-statistic based on the general GMM minimand for IV, whether the instruments are group dummies or not, is the same as the over-

[^13]identification test statistic discussed in many widely-used econometric references on simultaneous equations models. For example, this statistic features in Hausman's (1983) chapter on simultaneous equations in the Handbook of Econometrics, which also proposes a simple computational procedure: for homoskedastic models, the minimized 2SLS minimand is the sample size times the R^{2} from a regression of the 2SLS residuals on the instruments (and the included exogenous covariates). The formula for this is $N\left[\frac{\hat{\eta}^{\prime} P_{Z} \hat{\eta}}{\hat{\eta}^{\prime} \eta}\right]$, where $\hat{\eta}=\mathrm{Y}-W \hat{\Gamma}_{2 S L S}$ is the vector of 2SLS residuals.

Second, it's worth emphasizing that the essence of over-identification can be said to be "more than one way to skin the same econometric cat." In other words, given more than one instrument for the same causal relation, we might consider constructing simple IV estimators one at a time and comparing them. This comparison checks over-identification directly: If each just-identified estimator is consistent, the distance between them should be small relative to sampling variance, and should shrink as the sample size and hence the precision of these estimates increases. In fact, we might consider formally testing whether all possible just-identified estimators are the same. The resulting test statistic is said to generate a Wald ${ }^{16}$ test of this null, while the test-statistic based on the 2SLS minimand is said to be a Lagrange Multiplier (LM) test because it can be related to the score vector in a maximum likelihood version of the IV setup.

In the grouped-data version of IV, the Wald test amounts to a test of equality for the set of all possible linearly independent Wald estimators. If, for example, lottery numbers are divided into 4 groups based on various cohorts eligibility cutoffs (RSN 1-95, 96-125, 126-195, and the rest), then 3 linearly independent Wald estimators can be constructed. Alternatively, the efficient grouped-data estimator can be constructed by running GLS on these four conditional means. Four groups means there are 3 possible Wald estimators and 2 non-redundant equality restrictions on these three; hence, the relevant Wald statistic has 2 degrees of freedom. On the other hand, 4 groups means three instruments and a constant available to estimate a model with 2 parameters (the constant and the causal effect of military service). So the 2SLS minimand generates an over-identification test statistic with $4-2=2$ degrees of freedom. And, in fact, provided you use the same method of estimating the weighting matrix in the relevant quadratic forms, these two test statistics not only test the same thing, they are numerically equivalent. This makes sense since we have already seen that 2SLS is the efficient linear combination of Wald estimators 17

Finally, a caveat regarding over-identification tests in practice: In our experience, the "over-ID statistic" is often of little value in applied work. Because $J_{N}(\hat{g})$ measures variance-normalized goodness of-fit, the over-ID test-statistic tends to be low when the underlying estimates are imprecise. Since IV estimates are very often imprecise, we cannot take much satisfaction from the fact that one estimate is within sampling variance of another even if the individual estimates appear precise enough to be informative. On the other

[^14]hand, in cases where the underlying IV estimates are quite precise, the fact that the over-ID statistic rejects need not point to an identification failure. Rather, this may be evidence of treatment effect heterogeneity, a possibility we discuss further below. On the conceptual side, however, an understanding of the anatomy of the 2SLS minimand is invaluable, for it once again highlights the important link between grouped data and IV. This link takes the mystery out of estimation and testing with instrumental variables and forces us to confront the raw moments that are the foundation for causal inference.

4.3 Two-Sample IV and Split-Sample IV ${ }^{\star}$

The GMM interpretation of 2SLS highlights the fact that the IV estimator can be constructed from sample moments alone, with no micro data. Returning to the sample moment condition, 4.2.3, and re-arranging slightly produces a regression-like equation involving second moments:

$$
\begin{equation*}
\frac{Z^{\prime} \mathrm{Y}}{N}=\frac{Z^{\prime} W}{N} \Gamma+\frac{Z^{\prime} \eta}{N} \tag{4.3.1}
\end{equation*}
$$

GLS estimates of Γ in 4.3.1 are consistent because $E\left[\frac{Z^{\prime} Y}{N}\right]=E\left[\frac{Z^{\prime} W}{N}\right] \Gamma$.
The 2SLS minimand can be thought of as GLS applied to equation 4.3.1, after multiplying by \sqrt{N} to keep the residual from disappearing as the sample size gets large. In other words, 2SLS minimizes a quadratic form in the residuals from 4.3.1 with a (possibly non-diagonal) weighting matrix. ${ }^{18}$ An important insight that comes from writing the 2SLS problem in this way is that we do not need the individual observations in our sample to estimate 4.3.1. Just as with the OLS coefficient vector, which can be constructed from the sample conditional mean function, IV estimators can also be constructed from sample moments. The moments needed for IV are $\frac{Z^{\prime} Y}{N}$ and $\frac{Z^{\prime} W}{N}$. The dependent variable, $\frac{Z^{\prime} Y}{N}$, is a vector of dimension $[\mathrm{K}+\mathrm{Q}] \times 1$. The regressor matrix, $\frac{Z^{\prime} W}{N}$, is of dimension $[\mathrm{K}+\mathrm{Q}] \times[\mathrm{K}+1]$. The second-moment equation cannot be solved exactly unless $\mathrm{Q}=1$ so it makes sense to make the fit as good as possible by minimizing a quadratic form in the residuals. The most efficient weighting matrix for this purpose is the asymptotic covariance matrix of $\frac{Z^{\prime} \eta}{\sqrt{N}}$. This again produces the 2SLS minimand, $\hat{J}_{N}(\hat{g})$.

A related insight is the fact that the moment matrices on the left and right hand side of the equals sign in equation 4.3.1 need not come from the same data sets provided these data sets are drawn from the same population. This observation leads to the two-sample instrumental variables (TSIV) estimator used by Angrist (1990) and developed formally in Angrist and Krueger (1992) Briefly, let Z_{1} and Y_{1} denote

[^15]the instrument/covariate matrix and dependent variable vector in data set 1 of size N_{1} and let Z_{2} and W_{2} denote the instrument /covariate matrix and endogenous variable/covariate matrix in data set 2 of size N_{2}. Assuming $\operatorname{plim}\left(\frac{Z_{2}^{\prime} W_{2}}{N_{2}}\right)=\operatorname{plim}\left(\frac{Z_{1}^{\prime} W_{1}}{N_{1}}\right)$, GLS estimates of the two-sample moment equation
$$
\frac{Z_{1}^{\prime} \mathrm{Y}_{1}}{N_{1}}=\frac{Z_{2}^{\prime} W_{2}}{N_{2}} \Gamma+\left\{\left[\frac{Z_{1}^{\prime} W_{1}}{N_{1}}-\frac{Z_{2}^{\prime} W_{2}}{N_{2}}\right] \Gamma+\frac{Z_{1}^{\prime} \eta_{1}}{N_{1}}\right\}
$$
are also consistent for Γ. The limiting distribution of this estimator is obtained by normalizing by $\sqrt{N_{1}}$ and assuming $\operatorname{plim}\left(\frac{N_{2}}{N_{1}}\right)$ is a constant.

The utility of TSIV comes from the fact that it widens the scope for IV estimation to situations where observations on dependent variables, instruments, and the endogenous variable of interest are hard to find in a single sample. It may be easier to find one data set that has information on outcomes and instruments, with which the reduced form can be estimated, and another data set which has information on endogenous variables and instruments, with which the first stage can be estimated. For example, in Angrist (1990), administrative records from the Social Security Administration (SSA) provide information on the dependent variable (annual earnings) and the instruments (draft lottery numbers coded from dates of birth, as well as covariates for race and year of birth). The SSA, however, does not track participants' veteran status. This information was taken from military records, which also contain dates of birth that can used to code lottery numbers. Angrist (1990) used these military records to construct $\frac{Z_{2}^{\prime} W_{2}}{N_{2}}$, the first-stage correlation between lottery numbers and veteran status conditional on race and year of birth, while the SSA data were used to construct $\frac{Z_{1}^{\prime} \mathrm{Y}_{1}}{N_{1}}$.

Two further simplifications make TSIV especially easy to use. First, as noted previously, when the instruments consist of a full set of mutually exclusive dummy variables, as in Angrist (1990) and Angrist and Krueger (1992), the second moment equation, 4.3.1, simplifies to a model for conditional means. In particular, the 2SLS minimand for the two-sample problem becomes

$$
\begin{equation*}
\hat{J}_{N}(\hat{g})=\sum_{j} \omega_{j}\left(\bar{y}_{1 j}-\hat{g}^{\prime} \bar{W}_{2 j}\right)^{2} \tag{4.3.2}
\end{equation*}
$$

where $\bar{y}_{1 j}$ is the mean of the dependent variable at instrument/covariate value j in one sample, $\bar{W}_{2 j}$ is the mean of endogenous variables and covariates at instrument/covariate value j in a second sample, and ω_{j} is an appropriate weight. This amounts to weighted least squares estimation of the VIV equation, except that the dependent and independent variables do not come from the same sample. Again, Angrist (1990) and Angrist and Krueger (1992) provide illustrations. The optimal weights for asymptotically efficient TSIV are given by variance of $\bar{y}_{1 j}-\hat{g}^{\prime} \bar{W}_{2 j}$. This variance is affected by the fact that moments come from different samples, as are the TSIV standard errors, which are easy to compute in the dummy-instrument case since the estimator is equivalent to weighted least squares.

Second, Angrist and Krueger (1995) introduced a computationally attractive TSIV-type estimator that requires no matrix manipulation and can be implemented with ordinary regression software. This estimator, called Split-Sample IV (SSIV), works as follows. ${ }^{20}$ The first-stage estimates in data set two are given by $\left(Z_{2}^{\prime} Z_{2}\right)^{-1} Z_{2}^{\prime} W_{2}$. These fitted values can be carried over to data set 1 by constructing the cross-sample fitted value, $\hat{W}_{12} \equiv Z_{1}\left(Z_{2}^{\prime} Z_{2}\right)^{-1} Z_{2}^{\prime} W_{2}$. The SSIV second stage is a regression of Y_{1} on \hat{W}_{12}. The correct limiting distribution for this estimator is derived in Inoue and Solon (2005), who show that the limiting distribution presented in Angrist and Krueger (1992) requires the assumption that $Z_{1}^{\prime} Z_{1}=Z_{2}^{\prime} Z_{2}$ (as would be true if the marginal distribution of the instruments and covariates is fixed in repeated samples). It's worth noting, however, that the limiting distributions of SSIV and 2SLS are the same when the coefficient on the endogenous variable is zero. The standard errors for this special case are simple to construct and probably provide a reasonably good approximation to the general case ${ }^{21}$

4.4 IV with Heterogeneous Potential Outcomes

The discussion of IV up to this point postulates a constant causal effect. In the case of a dummy variable like veteran status, this means $\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}=\rho$ for all i, while with a multi-valued treatment like schooling, this means $Y_{s i}-Y_{s-1, i}=\rho$ for all s and all i. Both are highly stylized views of the world, especially the multi-valued case which imposes linearity as well as homogeneity. To focus on one thing at a time in a heterogeneous-effects model, we start with a zero-one causal variable. In this context, we'd like to allow for treatment-effect heterogeneity, in other words, a distribution of causal effects across individuals.

Why is treatment-effect heterogeneity important? The answer lies in the distinction between the two types of validity that characterize a research design. Internal validity is the question of whether a given design successfully uncovers causal effects for the population being studied. A randomized clinical trial or, for that matter, a good IV study, has a strong claim to internal validity. External validity is the predictive value of the study's findings in a different context. For example, if the study population in a randomized trial is especially likely to benefit from treatment, the resulting estimates may have little external validity. Likewise,

[^16]draft-lottery estimates of the effects of conscription for service in the Vietnam era need not be a good measure of the consequences of voluntary military service. An econometric framework with heterogeneous treatment effects helps us to assess both the internal and external validity of IV estimates ${ }^{22}$

4.4.1 Local Average Treatment Effects

In an IV framework, the engine that drives causal inference is the instrument, z_{i}, but the variable of interest is still D_{i}. This feature of the IV setup leads us to adopt a generalized potential-outcomes concept, indexed against both instruments and treatment status. Let $\mathrm{Y}_{i}(d, z)$ denote the potential outcome of individual i were this person to have treatment status $\mathrm{D}_{i}=d$ and instrument value $\mathrm{Z}_{i}=z$. This tells us, for example, what the earnings of i would be given alternative combinations of veteran status and draft-eligibility status. The causal effect of veteran status given i 's realized draft-eligibility status is $\mathrm{Y}_{i}\left(1, \mathrm{Z}_{i}\right)-\mathrm{Y}_{i}\left(0, \mathrm{Z}_{i}\right)$, while the causal effect of draft-eligibility status given i's veteran status is $\mathrm{Y}_{i}\left(\mathrm{D}_{i}, 1\right)-\mathrm{Y}_{i}\left(\mathrm{D}_{i}, 0\right)$.

We can think of instrumental variables as initiating a causal chain where the instrument, z_{i}, affects the variable of interest, D_{i}, which in turn affects outcomes, Y_{i}. To make this precise, we need notation to express the idea that the instrument has a causal effect on D_{i}. Let $\mathrm{D}_{1 i}$ be i 's treatment status when $\mathrm{Z}_{i}=1$, while $\mathrm{D}_{0 i}$ is i 's treatment status when $\mathrm{Z}_{i}=0$. Observed treatment status is therefore

$$
\begin{equation*}
\mathrm{D}_{i}=\mathrm{D}_{0 i}+\left(\mathrm{D}_{1 i}-\mathrm{D}_{0 i}\right) \mathrm{Z}_{i}=\pi_{0}+\pi_{1 i} \mathrm{Z}_{i}+\xi_{i} \tag{4.4.1}
\end{equation*}
$$

In random-coefficients notation, $\pi_{0} \equiv E\left[\mathrm{D}_{0 i}\right]$ and $\pi_{1 i} \equiv\left(\mathrm{D}_{1 i}-\mathrm{D}_{0 i}\right)$, so $\pi_{1 i}$ is the heterogeneous causal effect of the instrument on D_{i}. As with potential outcomes, only one of the potential treatment assignments, $\mathrm{D}_{1 i}$ and $\mathrm{D}_{0 i}$, is ever observed for any one person. In the draft lottery example, $\mathrm{D}_{0 i}$ tells us whether i would serve in the military if he draws a high (draft-ineligible) lottery number, while $\mathrm{D}_{1 i}$ tells us whether i would serve if he draws a low (draft-eligible) lottery number. We get to see one or the other of these potential assignments depending on z_{i}. The average causal effect of z_{i} on D_{i} is $E\left[\pi_{1 i}\right]$.

The first assumption in the heterogeneous framework is that the instrument is as good as randomly assigned: it is independent of the vector of potential outcomes and potential treatment assignments. Formally, this can be written

$$
\begin{equation*}
\left[\left\{\mathrm{Y}_{i}(d, z) ; \forall d, z\right\}, \mathrm{D}_{1 i}, \mathrm{D}_{0 i}\right] \amalg \mathrm{z}_{i}, \tag{4.4.2}
\end{equation*}
$$

Independence is sufficient for a causal interpretation of the reduced form, i.e., the regression of Y_{i} on Z_{i}.

[^17]Specifically,

$$
\begin{aligned}
E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=1\right]-E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=0\right] & =E\left[\mathrm{Y}_{i}\left(\mathrm{D}_{1 i}, 1\right) \mid \mathrm{Z}_{i}=1\right]-E\left[\mathrm{Y}_{i}\left(\mathrm{D}_{0 i}, 0\right) \mid \mathrm{Z}_{i}=0\right] \\
& =E\left[\mathrm{Y}_{i}\left(\mathrm{D}_{1 i}, 1\right)-\mathrm{Y}_{i}\left(\mathrm{D}_{0 i}, 0\right)\right],
\end{aligned}
$$

the causal effect of the instrument on Y_{i}. Independence also means that

$$
\begin{aligned}
E\left[\mathrm{D}_{i} \mid \mathrm{z}_{i}=1\right]-E\left[\mathrm{D}_{i} \mid \mathrm{z}_{i}=0\right] & =E\left[\mathrm{D}_{1 i} \mid \mathrm{z}_{i}=1\right]-E\left[\mathrm{D}_{0 i} \mid \mathrm{z}_{i}=0\right] \\
& =E\left[\mathrm{D}_{1 i}-\mathrm{D}_{0 i}\right]
\end{aligned}
$$

in other words, the first-stage from our earlier discussion of 2SLS captures the causal effect of z_{i} on D_{i}.
The second key assumption in the heterogeneous-outcomes framework is the presumption that $\mathrm{Y}_{i}(d, z)$ is only a function of $d{ }^{233}$ To be specific, while draft-eligibility clearly affects veteran status, an individual's potential earnings as a veteran are assumed to be unchanged by draft-eligibility status; while potential earnings as a nonveteran are similarly unaffected. In general, the claim that an instrument operates through a single known causal channel is called an exclusion restriction. In a linear model with constant effects, the exclusion restriction is expressed by the omission of the instrument from the causal equation of interest, or, equivalently, $E\left[\mathrm{z}_{i} \eta_{i}\right]=0$ in equation 4.1.14). It's worth noting that the traditional error-term notation used for simultaneous equations models doesn't lend itself to a clear distinction between independence and exclusion. We need z_{i} and η_{i} to be uncorrelated in this equation, but the reasoning that lies behind this assumption is unclear until we consider both the independence and exclusion restrictions.

The exclusion restriction fails for draft-lottery instruments if men with low draft lottery numbers were affected in some way other than through an increased likelihood of service. For example, Angrist and Krueger (1992) looked for an association between draft lottery numbers and schooling. Their idea was that educational draft deferments would have led men with low lottery numbers to stay in college longer than they would have otherwise desired. If so, draft lottery numbers are correlated with earnings for at least two reasons: an increased likelihood of military service and an increased likelihood of college attendance. The fact that the lottery number is randomly assigned (and therefore satisfies the independence assumption) does not make this possibility less likely. The exclusion restriction is distinct from the claim that the instrument is (as good as) randomly assigned. Rather, it is a claim about a unique channel for causal effects of the instrument ${ }^{24}$

Using the exclusion restriction, we can define potential outcomes indexed solely against treatment status

[^18]using the single-index $\left(\mathrm{Y}_{1 i}, \mathrm{Y}_{0 i}\right)$ notation we have been using all along. In particular,
\[

$$
\begin{align*}
\mathrm{Y}_{1 i} & \equiv \mathrm{Y}_{i}(1,1)=\mathrm{Y}_{i}(1,0) \\
\mathrm{Y}_{0 i} & \equiv \mathrm{Y}_{i}(0,1)=\mathrm{Y}_{i}(0,0) \tag{4.4.3}
\end{align*}
$$
\]

The observed outcome, Y_{i}, can therefore be written in terms of potential outcomes as:

$$
\begin{align*}
\mathrm{Y}_{i} & =\mathrm{Y}_{i}\left(0, \mathrm{Z}_{i}\right)+\left[\mathrm{Y}_{i}\left(1, \mathrm{Z}_{i}\right)-\mathrm{Y}_{i}\left(0, \mathrm{Z}_{i}\right)\right] \mathrm{D}_{i} \tag{4.4.4}\\
& =\mathrm{Y}_{0 i}+\left(\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}\right) \mathrm{D}_{i} .
\end{align*}
$$

A random-coefficients notation for this is

$$
\mathrm{Y}_{i}=\alpha_{0}+\rho_{i} \mathrm{D}_{i}+\eta_{i}
$$

a compact version of 4.4.4 with $\alpha_{0} \equiv E\left[\mathrm{Y}_{0 i}\right]$ and $\rho_{i} \equiv \mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}$.
A final assumption needed for heterogeneous IV models is that either $\pi_{1 i} \geq 0$ for all i or $\pi_{1 i} \leq 0$ for all i. This monotonicity assumption, introduced by Imbens and Angrist (1994), means that while the instrument may have no effect on some people, all of those who are affected are affected in the same way. In other words, either $\mathrm{D}_{1 i} \geq \mathrm{D}_{0 i}$ or $\mathrm{D}_{1 i} \leq \mathrm{D}_{0 i}$ for all i. In what follows, we assume monotonicity holds with $\mathrm{D}_{1 i} \geq \mathrm{D}_{0 i}$. In the draft-lottery example, this means that although draft-eligibility may have had no effect on the probability of military service for some men, there is no one who was actually kept out of the military by being drafteligible. Without monotonicity, instrumental variables estimators are not guaranteed to estimate a weighted average of the underlying individual causal effects, $\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}$.

Given the exclusion restriction, the independence of instruments and potential outcomes, the existence of a first stage, and monotonicity, the Wald estimand can be interpreted as the effect of veteran status on those whose treatment status can be changed by the instrument. This parameter is called the local average treatment effect ((LATE); Imbens and Angrist, 1994). Here is a formal statement:

Theorem 4.4.1 THE LATE THEOREM. Suppose

(A1, Independence) $\left\{\mathrm{Y}_{i}\left(\mathrm{D}_{1 i}, 1\right), \mathrm{Y}_{0 i}\left(\mathrm{D}_{0 i}, 0\right), \mathrm{D}_{1 i}, \mathrm{D}_{0 i}\right\} \amalg Z_{i} ;$
(A2, Exclusion) $\mathrm{Y}_{i}(d, 0)=\mathrm{Y}_{i}(d, 1) \equiv \mathrm{Y}_{d i}$ for $d=0,1$;
(A3, First-stage), $E\left[\mathrm{D}_{1 i}-\mathrm{D}_{0 i}\right] \neq 0$
(A4, Monotonicity) $\mathrm{D}_{1 i}-\mathrm{D}_{0 i} \geq 0 \forall i$, or vice versa;
Then

$$
\frac{E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=1\right]-E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=0\right]}{E\left[\mathrm{D}_{i} \mid \mathrm{Z}_{i}=1\right]-E\left[\mathrm{D}_{i} \mid \mathrm{Z}_{i}=0\right]}=E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right]=E\left[\rho_{i} \mid \pi_{1 i}>0\right]
$$

Proof. Use the exclusion restriction to write $E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=1\right]=E\left[\mathrm{Y}_{0 i}+\left(\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}\right) \mathrm{D}_{i} \mid \mathrm{Z}_{i}=1\right]$, which equals
$E\left[\mathrm{Y}_{0 i}+\left(\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}\right) \mathrm{D}_{1 i}\right]$ by independence. Likewise $E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=0\right]=E\left[\mathrm{Y}_{0 i}+\left(\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}\right) \mathrm{D}_{0 i}\right]$, so the numerator of the Wald estimator is $E\left[\left(\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}\right)\left(\mathrm{D}_{1 i}-\mathrm{D}_{0 i}\right)\right]$. Monotonicity means $\mathrm{D}_{1 i}-\mathrm{D}_{0 i}$ equals one or zero, so

$$
E\left[\left(\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}\right)\left(\mathrm{D}_{1 i}-\mathrm{D}_{0 i}\right)\right]=E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right] P\left[\mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right] .
$$

A similar argument shows

$$
E\left[\mathrm{D}_{i} \mid \mathrm{z}_{i}=1\right]-E\left[\mathrm{D}_{i} \mid \mathrm{z}_{i}=0\right]=E\left[\mathrm{D}_{1 i}-\mathrm{D}_{0 i}\right]=P\left[\mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right] .
$$

This theorem says that an instrument which is as good as randomly assigned, affects the outcome through a single known channel, has a first-stage, and affects the causal channel of interest only in one direction, can be used to estimate the average causal effect on the affected group. Thus, IV estimates of effects of military service using the draft lottery estimate the effect of military service on men who served because they were draft-eligible, but would not otherwise have served. This obviously excludes volunteers and men who were exempted from military service for medical reasons, but it includes men for whom draft policy was binding.

How useful is LATE? No theorem answers this question, but it's always worth discussing. Part of the interest in the effects of Vietnam-era service revolves around the question of whether veterans (especially, conscripts) were adequately compensated for their service. Internally valid draft lottery estimates answer this question. Draft lottery estimates of the effects of Vietnam-era conscription may also be relevant for discussions of any future conscription policy. On the other hand, while draft lottery instruments produce internally valid estimates of the causal effect of Vietnam-era conscription, the external validity - i.e., the predictive value of these estimates for military service in other times and places - is not directly addressed by the IV framework. There is nothing in IV formulas to explain why Vietnam-era service affects earnings; for that, you need a theory ${ }^{25}$

You might wonder why we need monotonicity for the LATE theorem, an assumption that plays no role in the traditional simultaneous-equations framework with constant effects. A failure of monotonicity means the instrument pushes some people into treatment while pushing others out. Angrist, Imbens, and Rubin (1996) call the latter group defiers. Defiers complicate the link between LATE and the reduced form. To see why, go back to the step in the proof of the LATE theorem which shows the reduced form is

$$
E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=1\right]-E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=0\right]=E\left[\left(\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}\right)\left(\mathrm{D}_{1 i}-\mathrm{D}_{0 i}\right)\right] .
$$

[^19]Without monotonicity, this is equal to

$$
E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right] P\left[\mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right]-E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{1 i}<\mathrm{D}_{0 i}\right] P\left[\mathrm{D}_{1 i}<\mathrm{D}_{0 i}\right] .
$$

We might therefore have a scenario where treatment effects are positive for everyone yet the reduced form is zero because effects on compliers are canceled out by effects on defiers. This doesn't come up in a constant-effects model because the reduced form is always the constant effect times the first stage regardless of whether the first stage includes defiant behavior ${ }^{26}$

A deeper understanding of LATE can be had by linking it to a workhorse of contemporary econometrics, the latent-index model for "dummy endogenous variables" like assignment to treatment. These models describe individual choices as determined by a comparison of partly observed and partly unknown ("latent") utilities and costs (see, e.g., Heckman, 1978). Typically, these unobservables are thought of as being related to outcomes, in which case the treatment variable is said to be endogenous (though it is not really endogenous in a simultanenous-equations sense). For example (ignoring covariates), we might model veteran status as

$$
\mathrm{D}_{i}=\left\{\begin{array}{cc}
1 & \text { if } \gamma_{0}+\gamma_{1} \mathrm{Z}_{i}>v_{i} \\
0 & \text { otherwise }
\end{array}\right.
$$

where v_{i} is a random factor involving unobserved costs and benefits of military service assumed to be independent of z_{i}. This latent-index model characterizes potential treatment assignments as:

$$
\mathrm{D}_{0 i}=1\left[\gamma_{0}>v_{i}\right] \text { and } \mathrm{D}_{1 i}=1\left[\gamma_{0}+\gamma_{1}>v_{i}\right]
$$

Note that in this model, monotonicity is automatically satisfied since γ_{1} is a constant. Assuming $\gamma_{1}>0$, LATE can be written

$$
E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right]=E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \gamma_{0}+\gamma_{1}>v_{i}>\gamma_{0}\right]
$$

which is a function of the latent first-stage parameters, γ_{0} and γ_{1}, as well as the joint distribution of $\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}$ and v_{i}. This is not, in general, the same as the population average treatment effect, $E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}\right]$, or the

$$
\begin{aligned}
& { }^{26} \text { With a constant effect, } \rho, \\
& \\
& \qquad \begin{aligned}
E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{1 i}\right. & \left.>\mathrm{D}_{0 i}\right] P\left[\mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right] \\
-E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{1 i}\right. & \left.<\mathrm{D}_{0 i}\right] P\left[\mathrm{D}_{1 i}<\mathrm{D}_{0 i}\right] . \\
& =\rho\left\{P\left[\mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right]-P\left[\mathrm{D}_{1 i}<\mathrm{D}_{0 i}\right]\right\} \\
& =\rho\left\{E\left[\mathrm{D}_{1 i}-\mathrm{D}_{0 i}\right]\right\} .
\end{aligned}
\end{aligned}
$$

So a zero reduced form effect means either the first stage is zero or $\rho=0$.
effect on the treated, $E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{i}=1\right]$. We explore the distinction between different average causal effects in Section 4.4.2.

4.4.2 The Compliant Subpopulation

The LATE framework partitions any population with an instrument into a set of three instrument-dependent subgroups, defined by the manner in which members of the population react to the instrument:

Definition 4.4.1 Compliers. The subpopulation with $\mathrm{D}_{1 i}=1$ and $\mathrm{D}_{0 i}=0$.
Always-takers. The subpopulation with $\mathrm{D}_{1 i}=\mathrm{D}_{0 i}=1$.
Never-takers. The subpopulation with $\mathrm{D}_{1 i}=\mathrm{D}_{0 i}=0$.
LATE is the effect of treatment on the population of compliers. The term "compliers" comes from an analogy with randomized trials where some experimental subjects comply with the randomly assigned treatment protocol (e.g., take their medicine) but some do not, while some control subjects obtain access to the experimental treatment even though they were not supposed to. Those who don't take their medicine when randomly assigned to do so are never-takers while those who take the medicine even when put into the control group are always-takers. Without adding further assumptions (e.g., constant causal effects), LATE is not informative about effects on never-takers and always-takers because, by definition, treatment status for these two groups is unchanged by the instrument (random assignment). The analogy between IV and a randomized trial with partial compliance is more than allegorical - IV solves the problem of causal inference in a randomized trial with partial compliance. This important point merits a separate subsection, below.

Before turning to this important special case, we make a few general points. First, the average causal effect on compliers is not usually the same as the average treatment effect on the treated. From the simple fact that $\mathrm{D}_{i}=\mathrm{D}_{0 i}+\left(\mathrm{D}_{1 i}-\mathrm{D}_{0 i}\right) \mathrm{Z}_{i}$, we learn that the treated population consists of two non-overlapping groups. By monotonicity, we cannot have both $\mathrm{D}_{0 i}=1$ and $\mathrm{D}_{1 i}-\mathrm{D}_{0 i}=1$ since $\mathrm{D}_{0 i}=1$ implies $\mathrm{D}_{1 i}=1$. The treated therefore have either $\mathrm{D}_{0 i}=1$ or $\mathrm{D}_{1 i}-\mathrm{D}_{0 i}=1$ and $\mathrm{Z}_{i}=1$, and hence D_{i} can be written as the sum of two mutually-exclusive dummies, $\mathrm{D}_{i 0}$ and $\left(\mathrm{D}_{1 i}-\mathrm{D}_{0 i}\right) \mathrm{z}_{i}$. The treated consist of either always-takers or compliers with the instrument switched on. Since the instrument is as good as randomly assigned, compliers with the instrument switched on are representative of all compliers. From here we get

$$
\begin{align*}
\underbrace{E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{i}=1\right]}_{\text {effect on the treated }}= & E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{0 i}=1\right] P\left[\mathrm{D}_{0 i}=1 \mid \mathrm{D}_{i}=1\right] \tag{4.4.5}\\
& +E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{1 i}>\mathrm{D}_{0 i}, \mathrm{Z}_{i}=1\right] P\left[\mathrm{D}_{1 i}>\mathrm{D}_{0 i}, \mathrm{Z}_{i}=1 \mid \mathrm{D}_{i}=1\right] \\
= & \underbrace{E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{0 i}=1\right]}_{\text {effect on always-takers }} P\left[\mathrm{D}_{0 i}=1 \mid \mathrm{D}_{i}=1\right] \\
& +\underbrace{E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right]}_{\text {effect on compliers }} P\left[\mathrm{D}_{1 i}>\mathrm{D}_{0 i}, \mathrm{Z}_{i}=1 \mid \mathrm{D}_{i}=1\right]
\end{align*}
$$

Since $P\left[\mathrm{D}_{0 i}=1 \mid \mathrm{D}_{i}=1\right]$ and $P\left[\mathrm{D}_{1 i}>\mathrm{D}_{0 i}, \mathrm{Z}_{i}=1 \mid \mathrm{D}_{i}=1\right]$ add up to one, this means that the effect of treatment on the treated is a weighted average of effects on always-takers and compliers.

Likewise, LATE is not the average causal effect of treatment on the non-treated, $E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{i}=0\right]$. In the draft-lottery example, the average effect on the non-treated is the average causal effect of military service on the population of non-veterans from the Vietnam-era cohorts. The average effect of treatment on the non-treated is a weighted average of effects on never-takers and compliers. In particular,

$$
\begin{align*}
& \underbrace{E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{i}=0\right]}_{\text {effect on the non-treated }} \tag{4.4.6}\\
&=\underbrace{E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{1 i}=0\right]}_{\text {effect on never-takers }} P\left[\mathrm{D}_{1 i}=0 \mid \mathrm{D}_{i}=0\right] \\
&+\underbrace{E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right]}_{\text {effect on compliers }} P\left[\mathrm{D}_{1 i}>\mathrm{D}_{0 i}, \mathrm{Z}_{i}=0 \mid \mathrm{D}_{i}=0\right]
\end{align*}
$$

where we use the fact that, by monotonicity, those with $\mathrm{D}_{1 i}=0$ must be never-takers.
Finally, averaging 4.4.5 and 4.4.6 using

$$
E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}\right]=E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{i}=1\right] P\left[\mathrm{D}_{i}=1\right]+E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{i}=0\right] P\left[\mathrm{D}_{i}=0\right]
$$

shows the overall population average treatment effect to be a weighted average of effects on compliers, alwaystakers, and never-takers. Of course, this is a conclusion we could have reached directly given monotonicity and the definition at the beginning of this subsection.

Because an instrumental variable is not directly informative about effects on always-takers and nevertakers, instruments do not usually capture the average causal effect on all of the treated or on all of the non-treated. There are important exceptions to this rule, however: instrumental variables that allow no always-takers or no never-takers. Although this scenario is not typical, it is an important special case. One example is the twins instrument for fertility, used by Rosenzweig and Wolpin (1980), Bronars and Grogger (1994), Angrist and Evans (1998), and Angrist, Lavy, and Schlosser (2006). Another is Oreopoulos' (2006) recent study using changes in compulsory attendance laws as instruments for schooling in Britain.

To see how this special case works with twins instruments, let T_{i} be a dummy variable indicating multiple second births. Angrist and Evans (1998) used this instrument to estimate the causal effect of having three children on earnings in the population of women with at least two children. The third child is especially interesting because reduced fertility for American wives in the 1960s and 1970s meant a switch from three children to two. Multiple second births provide quasi-experimental variation on this margin. Let $\mathrm{Y}_{0 i}$ denote potential earnings if a woman has only two children while $\mathrm{Y}_{1 i}$ denotes her potential earnings if she has three, an event indicated by D_{i}. Assuming that T_{i} is randomly assigned, i.e., that fertility increases by at most one child in response to a multiple birth, and that multiple births affect outcomes only by increasing fertility,

LATE using the twins instrument, T_{i}, is also $E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{i}=0\right]$, the average causal effect on women who are not treated (i.e., have two children only). This is because all women who have a multiple second birth end up with three children, i.e., there are no never-takers in response to the twins instrument.

Oreopoulos (2006) also uses IV to estimate an average causal effect of treatment on the non-treated. His study estimates the economic returns to schooling using an increase in the British compulsory attendance age from 14 to 15 . Compliance with the Britain's new compulsory attendance law was near perfect, though many teens would previously have dropped out of school at age 14. The causal effect of interest in this case is the earnings premium for an additional year of high-school. Finishing this year can be thought of as the treatment. Since everybody in Oreopoulos' British sample finishes the additional year when compulsory schooling laws are made stricter, Oreopoulos' IV strategy captures the average causal effect of obtaining one more year of high school on all those who leave school at 14. This turns on the fact that British teens are remarkably law-abiding people - Oreopoulos' IV strategy wouldn't estimate the effect of treatment on the non-treated in, say, Israel, where teenagers get more leeway when it comes to compulsory school attendance. Israeli econometricians using changes in compulsory attendance laws as instruments must therefore make do with LATE.

4.4.3 IV in Randomized Trials

The language of the LATE framework is based on an analogy between IV and randomized trials. But some instruments really come from randomized trials. If the instrument is a randomly assigned offer of treatment, then LATE is the effect of treatment on those who comply with the offer but are not treated otherwise. An especially important case is when the instrument is generated by a randomized trial with one-sided noncompliance. In many randomized trials, participation is voluntary among those randomly assigned to receive treatment. On the other hand, no one in the control group has access to the experimental intervention. Since the group that receives (i.e., complies with) the assigned treatment is a self-selected subset of those offered treatment, a comparison between those actually treated and the control group is misleading. The selection bias in this case is almost always positive: those who take their medicine in a randomized trial tend to be healthier; those who take advantage of randomly assigned economic interventions like training programs tend to earn more anyway.

IV using the randomly assigned treatment intended as an instrumental variable for treatment received solves this sort of compliance problem. Moreover, LATE is the effect of treatment on the treated in this case. Suppose the instrument, z_{i}, is a dummy variable indicating random assignment to a treatment group, while D_{i} is a dummy indicating whether treatment was actually received. In practice, because of non-compliance, D_{i} is not equal to Z_{i}. An example is the randomized evaluation of the JTPA training program, where only 60 percent of those assigned to be trained received training, while roughly 2 percent of those assigned to the control group received training anyway (Bloom, et al., 1997). Non-compliance in the JTPA arose from lack
of interest among participants and the failure of program operators to encourage participation. Since the compliance problem in this case is largely confined to the treatment group, LATE using random assignment, Z_{i}, as an instrument for treatment received, D_{i}, is the effect of treatment on the treated.

This use of IV to solve the compliance problems is illustrated in Table 4.4.1, which presents results from the JTPA experiment. The outcome variable of primary interest in the JTPA experiment is total earnings in the 30 -month period after random assignment. Columns $1-2$ of the table show the difference in earnings between those who were trained and those who were not (the estimates in column 2 are from a regression model that adjusts for a number of individual characteristics measured at the beginning of the experiment. The contrast reported in columns 1-2 is on the order of $\$ 4,000$ for men and $\$ 2,200$ for women, in both cases a large treatment effect that amounts to about 20 percent of average earnings. But these estimates are misleading because they compare individuals according to D_{i}, the actual treatment received. Since individuals assigned to the treatment group were free to decline (and 40% did so), this comparison throws away the random assignment unless the decision to accept treatment is itself independent of potential outcomes. This seems unlikely.
Table 4.4.1: Results from the JTPA experiment: OLS and IV estimates of training impacts

	Comparisons by Training Status		Comparisons by Assignment Status		Instrumental Variable Estimates	
	Without Covariates (1)	With Covariates (2)	Without Covariates (3)	With Covariates (4)	Without Covariates (5)	With Covariates (6)
A. Men	$\begin{aligned} & 3,970 \\ & (555) \end{aligned}$	$\begin{aligned} & 3,754 \\ & (536) \end{aligned}$	$\begin{aligned} & 1,117 \\ & (569) \end{aligned}$	$\begin{gathered} 970 \\ (546) \end{gathered}$	$\begin{aligned} & 1,825 \\ & (928) \end{aligned}$	$\begin{aligned} & 1,593 \\ & (895) \end{aligned}$
B. Women	$\begin{aligned} & 2,133 \\ & (345) \end{aligned}$	$\begin{aligned} & 2,215 \\ & (334) \end{aligned}$	$\begin{aligned} & 1,243 \\ & (359) \end{aligned}$	$\begin{aligned} & 1,139 \\ & (341) \end{aligned}$	$\begin{aligned} & 1,942 \\ & (560) \end{aligned}$	$\begin{aligned} & 1,780 \\ & (532) \end{aligned}$
Notes: The the JTPA show differe status as an Black, Hisp strategy rec	table report xperiment. nces by rand instrument nic, Married mmended,	OLS, reduc olumns (1) m-assignme for training, Worked les ge group and	form, and IV (2) show d tatus. Colu he covariate 13 weeks cond follow-	estimates ferences in ns (5) and used in col past year, survey. Ro	e effect of s ings by trai report the r s (2), (5) a C (for wom t standard	raining on columns g random-a High school dicators for own in pare

Columns 3 and 4 of Table 4.4.1. compare individuals according to whether they were offered treatment. In other words, this comparison is based on randomly assigned z_{i}. In the language of clinical trials, the contrast in columns $3-4$ is known as the intention-to-treat (ITT) effect. The intention-to-treat effects in the table are on the order $\$ 1,200$ (somewhat less with covariates). Since Z_{i} was randomly assigned, the ITT effect have a causal interpretation: they tell us the causal effect of the offer of treatment, building in the fact that many of those offered will decline. For this reason, the ITT effect is too small relative to the average causal effect on those who were in fact treated. Columns 5 and 6 put the pieces together and give us the most interesting effect: intention-to-treat divided by the difference in compliance rates between treatment and control groups as originally assigned (about .6). These figures, roughly $\$ 1,800$, estimate the effect of treatment on the treated.

How do we know the that ITT-divided-by-compliance is the effect of treatment on the treated? We can recognize ITT as the reduced-form effect of the randomly assigned offer of treatment, our instrument in this case. The compliance rate is the first stage associated with this instrument, and the Wald estimand, as always, is the reduced-form divided by the first-stage. In general this equals LATE, but because we have (almost) no always-takers, the treated population consists (almost) entirely of compliers. The IV estimates in column 5 and 6 of Table 4.4.1 are therefore consistent estimates of the effect of treatment on the treated.

This conclusion is important enough that it warrants an alternative derivation. To the best of our knowledge the first person to point out that the IV formula can be used to estimate the effect of treatment on the treated in a randomized trial with one-sided non-compliance was Howard Bloom (1984). Here is Bloom's result with a simple direct proof.

Theorem 4.4.2 THE BLOOM RESULT. Suppose the assumptions of the LATE theorem hold, and $E\left[\mathrm{D}_{i} \mid \mathrm{z}_{i}=\right.$ $0]=0$. Then

$$
\frac{E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=1\right]-E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=0\right]}{E\left[\mathrm{D}_{i} \mid \mathrm{Z}_{i}=1\right]}=E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{i}=1\right] .
$$

Proof. $E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=1\right]=E\left[\mathrm{Y}_{i 0}+\left(\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}\right) \mathrm{D}_{i} \mid \mathrm{Z}_{i}=1\right]$, while $E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=0\right]=E\left[\mathrm{Y}_{i 0} \mid \mathrm{Z}_{i}=0\right]$ because $E\left[\mathrm{D}_{i} \mid \mathrm{Z}_{i}=\right.$ $0]=0$. Therefore

$$
E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=1\right]-E\left[\mathrm{Y}_{i} \mid \mathrm{Z}_{i}=0\right]=E\left[\left(\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}\right) \mathrm{D}_{i} \mid \mathrm{Z}_{i}=1\right]
$$

by independence. But

$$
E\left[\left(\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}\right) \mathrm{D}_{i} \mid \mathrm{Z}_{i}=1\right]=E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{i}=1, \mathrm{z}_{i}=1\right] P\left[\mathrm{D}_{i}=1 \mid \mathrm{Z}_{i}=1\right]
$$

while $E\left[\mathrm{D}_{i} \mid \mathrm{Z}_{i}=0\right]=0$ means $\mathrm{D}_{i}=1$ implies $\mathrm{Z}_{i}=1$. Hence, $E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{i}=1, \mathrm{Z}_{i}=1\right]=E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{i}=1\right]$

In addition to telling us how to analyze randomized trials with non-compliance, the LATE framework
opens the door to cleverly-designed randomized experiments in settings where it's impossible or unethical to compel treatment compliance. A famous example from the field of Criminology is the Minneapolis Domestic Violence Experiment (MDVE). The MDVE was a pioneering effort to determine the best police response to domestic violence (Sherman and Berk, 1984). In general, police use a number of strategies when on a domestic violence call. These include referral to counseling, separation orders, and arrest. A vigorous debate swirls around the question of whether a hard-line response - arrest and at least temporary incarceration - is productive, especially in view of the fact that domestic assault charges are frequently dropped.

As a result of this debate, the city of Minneapolis authorized a randomized trial where the police response to a domestic disturbance was determined in part by random assignment. The research design used randomly shuffled color-coded charge sheets telling the responding officers to arrest some perpetrators while referring others to counseling or separating the parties. In practice, however, the police were free to overrule the random assignment. For example, an especially dangerous or drunk offender was arrested no matter what. As a result, the actual response often deviated from the randomly assigned response, though the two are highly correlated.

Most published analyses of the MDVE data recognize this compliance problem and focus on ITT effects, i.e., an analysis using the original random assignment and not the treatment actually delivered. But the MDVE data can also be used to get the average causal effect on compliers, in this case those who were arrested because they were randomly assigned to be but would not have been arrested otherwise. The MDVE is analyzed in this spirit in Angrist (2006). Because everyone in the MDVE who was assigned to be arrested was in fact arrested, there are no never-takers. This is an interesting twist and the flip-side of the Bloom scenario: here, we have $\mathrm{D}_{1 i}=1$ for everybody. Consequently, LATE is the effect of treatment on the non-treated, i.e.,

$$
E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right]=E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{i}=0\right]
$$

where D_{i} indicates arrest. The IV estimates using MDVE data show that arrest reduces repeat offenses sharply, in this case, among the subpopulation that was not arrested ${ }^{27}$

4.4.4 Counting and Characterizing Compliers

We've seen that, except in special cases, each instrumental variable identifies a unique causal parameter, one specific to the subpopulation of compliers for that instrument. Different valid instruments for the same causal relation therefore estimate different things, at least in principle (an important exception being

[^20]instruments that allow for perfect compliance on one side or the other). Although different IV estimates are "weighted-up" by 2SLS to produce a single average causal effect, over-identification testing of the sort discussed in Section 4.2.2, where multiple instruments are validated according to whether or not they estimate the same thing, is out the window in a fully heterogeneous world.

Differences in compliant sub-populations might explain variability in treatment effects from one instrument to another. We would therefore like to learn as much as we can about the compliers for different instruments. Moreover, if the compliant subpopulation is similar to other populations of interest, the case for extrapolating estimated causal effects to these other populations is stronger. In this spirit, Acemoglu and Angrist (2000) argue that quarter-of-birth instruments and state compulsory attendance laws (the minimum schooling required before leaving school in your state of birth when you were 14) affect essentially the same group of people and for the same reasons. We therefore expect IV estimates of the returns to schooling from these two sets of instruments to be similar. We might also expect the quarter of birth estimates to predict the impact of contemporary proposals to strengthen compulsory attendance laws.

On the other hand, if the compliant subpopulations associated with two or more instruments are very different, yet the IV estimates they generate are similar, we might be prepared to adopt homogeneous effects as a working hypothesis. This revives the over-identification idea, but puts it at the service of external validity ${ }^{28}$ This reasoning is illustrated by the study of the effects of family size on children's education by Angrist, Lavy, and Schlosser (2006). The Angrist, Lavy, and Schlosser study is motivated by the observation that children from larger families typically end up with less education than those from smaller families. A long-standing concern in research on fertility is whether the observed negative correlation between larger families and worse outcomes is causal. As it turns out, IV estimates of the effect of family size using a number of different instruments, each with very different compliant subpopulations, all generate results showing no effect of family size. Angrist, Lavy, and Schlosser (2006) argue that their results point to a common treatment of zero for just about everybody in the Israeli population they study.

We have already seen that the size of a complier group is easy to measure. This is just the Wald first-stage, since, given monotonicity, we have

$$
\begin{aligned}
P\left[\mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right] & =E\left[\mathrm{D}_{1 i}-\mathrm{D}_{0 i}\right] \\
& =E\left[\mathrm{D}_{1 i}\right]-E\left[\mathrm{D}_{0 i}\right] \\
& =E\left[\mathrm{D}_{i} \mid \mathrm{Z}_{i}=1\right]-E\left[\mathrm{D}_{i} \mid \mathrm{Z}_{i}=0\right] .
\end{aligned}
$$

We can also tell what proportion of the treated are compliers since, for compliers, treatment status is

[^21]completely determined by z_{i}. Start with the definition of conditional probability:
\[

$$
\begin{align*}
P\left[\mathrm{D}_{1 i}\right. & \left.>\mathrm{D}_{0 i} \mid \mathrm{D}_{i}=1\right]=\frac{P\left[\mathrm{D}_{i}=1 \mid \mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right] P\left[\mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right]}{P\left[\mathrm{D}_{i}=1\right]} \tag{4.4.7}\\
& =\frac{P\left[\mathrm{z}_{i}=1\right]\left(E\left[\mathrm{D}_{i} \mid \mathrm{z}_{i}=1\right]-E\left[\mathrm{D}_{i} \mid \mathrm{z}_{i}=0\right]\right)}{P\left[\mathrm{D}_{i}=1\right]} .
\end{align*}
$$
\]

The second equality uses the fact that $P\left[\mathrm{D}_{i}=1 \mid \mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right]=P\left[\mathrm{z}_{i}=1 \mid \mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right]$ and that $P\left[\mathrm{z}_{i}=1 \mid \mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right]$ $=P\left[\mathrm{z}_{i}=1\right]$ by Independence. In other words, the proportion of the treated who are compliers is given by the first stage, times the probability the instrument is switched on, divided by the proportion treated.

Formula 4.4 .7 is illustrated here by calculating the proportion of veterans who are draft-lottery compliers. The ingredients are reported in Table 4.4.2. For example, for white men born in 1950, the first stage is .159 , the probability of draft-eligibility is $\frac{195}{366}$, and the marginal probability of treatment is .267 . From these statistics, we compute that the compliant subpopulation is .32 of the veteran population in this group. The proportion of veterans who were draft-lottery compliers falls to 20 percent for non-white men born in 1950. This is not surprising since the draft-lottery first stage is considerably weaker for non-whites. The last column of the table reports the proportion of nonveterans who would have served if they had been draft-eligible. This ranges from 3 percent of non-whites to 10 percent of whites, reflecting the fact that most non-veterans were deferred, ineligible, or unqualified for military service.
 Notes: The table shows an analysis of the absolute and relative size of the complier population for a number of instrumental variables. The first-stage, reported in column 6 , gives the absolute size of the complier group. Columns 8 and 9 show the size of the complier population relative to the

[^22]The effect of compulsory military service is the parameter of primary interest in the Angrist (1990) study, so the fact that draft-eligibility compliers are a minority of veterans is not really a limitation of this study. Even in the Vietnam era, most soldiers were volunteers, a little-appreciated fact about Vietnam-era veterans. The LATE interpretation of IV estimates using the draft lottery highlights the fact that other identification strategies are needed to estimate effects of military service on volunteers (some of these are implemented in Angrist, 1998).

The remaining rows in Table 4.4.2 document the size of the compliant subpopulation for the twins and sibling-sex composition instruments used by Angrist and Evans (1998) to estimate the effects of childbearing and for the quarter of birth instruments and compulsory attendance laws used by Angrist and Krueger (1991) and Acemoglu and Angrist (2000) to estimates the returns to schooling. In each of these studies, the compliant subpopulation is a small fraction of the treated group. For example, less than 2 percent of those who graduated from high school did so because of compulsory attendance laws or by virtue of having been born in a late quarter.

The question of whether a small compliant subpopulation is a cause for worry is context-specific. In some cases, it seems fair to say, "you get what you need." With many policy interventions, for example, it is a marginal group that is of primary interest, a point emphasized in McClellan's (1994) landmark IV study of the effects of surgery on heart attack patients. McClellan uses the relative distance to cardiac care facilities to construct instruments for whether an elderly heart-attack patient is treated with a surgical intervention. Most patients get the same treatment either way, but for some, the case for major surgery is marginal. In such cases, providers or patients opt for a less invasive strategy if the nearest surgical facility is far away. McClellan finds little benefit from surgical procedures for this marginal group. Similarly, an increase in the compulsory attendance age to age 18 is clearly irrelevant for the vast majority of American high school students, but it will affect a few who would otherwise drop out. IV estimates suggest the economic returns to schooling for this marginal group are substantial.

The last column of Table 4.4.2 illustrates the special feature of twins instruments alluded to at the end of the previous subsection. As before, let $\mathrm{D}_{i}=0$ for women with two children in a sample of women with at least two children, while $\mathrm{D}_{i}=1$ indicates women who have more than two. Because there are no never-takers in response to the event of a multiple birth, i.e., all mothers who have twins at second birth end up with (at least) three children, the probability of compliance among those with $\mathrm{D}_{i}=0$ is virtually one (the table shows an entry of .97). LATE is therefore the effect on the non-treated, $E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{D}_{i}=0\right]$, in this case.

Unlike the size of the complier group, information on the characteristics of compliers seems like a tall order because the compliers cannot be individually identified. Because we can't see both $\mathrm{D}_{1 i}$ and $\mathrm{D}_{0 i}$ for each individual, we can't just list those with $\mathrm{D}_{1 i}>\mathrm{D}_{0 i}$ and then calculate the distribution of characteristics for this group. Nevertheless, it's easy to describe the distribution of complier characteristics. To simplify,
we focus here on characteristics - like race or degree completion - that can be described by dummy variables. In this case, everything we need to know can be learned from variation in the first stage across covariate groups.

Let $x_{1 i}$ be a Bernoulli-distributed characteristic, say a dummy indicating college graduates. Are sexcomposition compliers more or less likely to be college graduates than other women with two children? This question is answered by the following calculation:

$$
\begin{equation*}
\frac{P\left[x_{1 i}=1 \mid \mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right]}{P\left[x_{1 i}=1\right]}=\frac{P\left[\mathrm{D}_{1 i}>\mathrm{D}_{0 i} \mid x_{1 i}=1\right]}{P\left[\mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right]}=\frac{E\left[\mathrm{D}_{i} \mid \mathrm{z}_{i}=1, x_{1 i}=1\right]-E\left[\mathrm{D}_{i} \mid \mathrm{z}_{i}=0, x_{1 i}=1\right]}{E\left[\mathrm{D}_{i} \mid \mathrm{Z}_{i}=1\right]-E\left[\mathrm{D}_{i} \mid \mathrm{Z}_{i}=0\right]} . \tag{4.4.8}
\end{equation*}
$$

In other words, the relative likelihood a complier is a college graduate is given by the ratio of the first stage for college graduates to the overall first stage ${ }^{29}$

This calculation is illustrated in Table 4.4.3, which reports compliers' characteristics ratios for age at first birth, nonwhite race, and degree completion using twins and same-sex instruments. The table was constructed from the Angrist and Evans (1998) 1980 census extract. Twins compliers are much more likely to be over 30 than the average mother in the sample, reflecting the fact that younger women who had a multiple birth were likely to go on to have additional children anyway. Twins compliers are also more educated than the average mother, while sex-composition compliers are less educated. This helps to explain the smaller 2SLS estimates generated by twins instruments (reported here in Table 4.1.4 , since Angrist and Evans (1998) show that the labor supply consequences of childbearing decline with mother's schooling.

[^23]Table 4.4.3: Complier-characteristics ratios for twins and sex-composition instruments

Variable	$\begin{gathered} E[x] \\ (1) \end{gathered}$	Twins at second birth		First two children are same sex	
		$E\left[x \mid \mathrm{D}_{1}>\mathrm{D}_{0}\right]$ (2)	$P\left[x \mid \mathrm{D}_{1}>\mathrm{D}_{0}\right] / P[X]$ (3)	$E\left[x \mid \mathrm{D}_{1}>\mathrm{D}_{0}\right]$ (6)	$P\left[x \mid \mathrm{D}_{1}>\mathrm{D}_{0}\right] / P[X]$ (5)
Age 30 or older at first birth	0.00291	0.00404	$\begin{gathered} 1.39 \\ (0.0201) \end{gathered}$	0.00233	$\begin{gathered} 0.995 \\ (0.374) \end{gathered}$
Black or hispanic	0.125	0.103	$\begin{gathered} 0.822 \\ (0.00421) \end{gathered}$	0.102	$\begin{gathered} 0.814 \\ (0.0775) \end{gathered}$
High school graduate	0.822	0.861	$\begin{gathered} 1.048 \\ (0.000772) \end{gathered}$	0.815	$\begin{gathered} 0.998 \\ (0.0140) \end{gathered}$
College graduate	0.132	0.151	$\begin{gathered} 1.14 \\ (0.00376) \end{gathered}$	0.0904	$\begin{gathered} 0.704 \\ (0.0692) \end{gathered}$
Notes: The table reports an a ments. The ratios in column indicated in each row. Data	sis of com nd 5 give from the	characteristic relative likeli Census 5\% s	for twins and sex-com od compliers have the mple, including marrie	ion instruaracteristic others age	
21-35 with at least two child columns.	as in Ang	and Evans (19	The sample size is	,654 for all	

[^0]: ${ }^{1}$ Recent years have seen an increased willingness by statisticians to discuss statistical models for observational data in an explicitly causal framework; see, for example, Freedman's (2005) review.

[^1]: ${ }^{2}$ Key historical references here are Wald (1940) and Durbin (1954), both discussed below.
 ${ }^{3}$ See Angrist and Krueger (2001) for a brief exposition of the history and uses of IV; Stock and Trebbi (2003) for a detailed account of the birth of IV; and Morgan (1990) for an extended history of econometric ideas, including the simultaneous equations model.

[^2]: ${ }^{4}$ Other explanations are possible, the most likely being some sort of family background effect associated with season of birth (see, e.g., Bound, Jaeger, and Baker, 1995). Weighing against the possibility of omitted family background effects is the fact that the quarter of birth pattern in average schooling is much more pronounced at the schooling levels most affected by compulsory attendance laws. Another possible concern is a pure age-at-entry effect which operates through channels other than highest grade completed (e.g., achievement). The causal effect of age-at-entry on learning is difficult, if not impossible, to separate from pure age effects, as noted in Chapter 1. A recent study by Elder and Lubotsky (2008) argues that the evolution of putative age-at-entry effects over time is more consistent with effects due to age differences per se than to a within-school learning advantage for older students.

[^3]: ${ }^{5}$ For a direct proof that 4.1 .5 equals ρ in 4.1 .6 , use 4.1 .6 to substitute for Y_{i} in $\frac{\operatorname{Cov}\left(\mathrm{Y}_{i}, \tilde{z}_{i}\right)}{\operatorname{Cov}\left(\mathrm{s}_{i}, \tilde{z}_{i}\right)}$.

[^4]: ${ }^{6}$ Note that $\hat{s}_{i}^{*}=\tilde{z}_{i} \hat{\pi}_{11}$, where \tilde{z}_{i} is the residual from a regression of Z_{i} on X_{i}, so that the 2 SLS estimator is therefore the

[^5]: sample analog of $\frac{\left[\frac{\operatorname{Cov}\left(\mathrm{Y}_{i}, \tilde{z}_{i}\right)}{V\left(z_{i}\right)}\right]}{\hat{\pi}_{11}}$. But the sample analog of the numerator, $\frac{\operatorname{Cov}\left(\mathrm{Y}_{i}, \tilde{z}_{i}\right)}{V\left(\tilde{z}_{i}\right)}$, is the OLS estimate of π_{21} in the reduced form, 4.1.4b, while $\hat{\pi}_{11}$ is the OLS estimate of the first-stage effect, π_{11}, in 4.1.4a. Hence, 2SLS with a single instrument is ILS, i.e., the ratio of the reduced form-effect of the instrument to the corresponding first-stage effect where both the first-stage and reduced-form include covariates.

[^6]: ${ }^{7}$ This gain may not be without cost, as the use of many additional instruments opens up the possibility of increased bias, an issue discussed in Chapter 8 below.

[^7]: ${ }^{8}$ As noted in the introduction to this chapter, measurement error in regressors tends to shrink regression coefficients towards zero. To eliminate this bias, Wald (1940) suggested that the data be divided in a manner independent of the measurement error, and the coefficient of interest estimated as a ratio of differences in means as in 4.1.12. Durbin (1954) showed that Wald's method of fitting straight lines is an IV estimator where the instrument is a dummy marking Wald's division of the data. Hausman (2001) provides an overview of econometric strategies for dealing with measurement error.

[^8]: ${ }^{9} \mathrm{An}$ exception is the classical measurement error model, where both the variable to be instrument and the instrument are assumed to be continuous. Here, we have in mind IV scenarios involving omitted variables bias.

[^9]: ${ }^{10}$ Continuous instruments recoded as dummies can be seen as providing a parsimonious non-parametric model for the underlying first-stage relation, $E\left[\mathrm{D}_{i} \mid \mathrm{z}_{i}\right]$. In homoskedastic models with constant coefficients, the asymptotically efficient instrument is $E\left[\mathrm{D}_{i} \mid \mathrm{Z}_{i}\right]$ (Newey, 1990).

[^10]: ${ }^{11}$ See, e.g., the preface to Borjas (2005).

[^11]: ${ }^{12} \mathrm{~W}$ ith a single endogenous variable and more than one instrument, Γ is $[\mathrm{K}+1] \times 1$, while Z_{i} is $[\mathrm{K}+\mathrm{Q}] \times 1$ for $\mathrm{Q}>1$. Hence the resulting linear system cannot be solved unless there is a linear dependency that makes some of the instruments redundant.

 13 "Quadratic form" is matrix language for a weighted sum of squares. Suppose v is an $N \times 1$ vector and M is an $N \times N$

[^12]: matrix. A quadratic form in v is $v^{\prime} M v$. If M is a $N \times N$ diagonal matrix with diagonal elements m_{i}, then $v^{\prime} M v=\sum_{i} m_{i} v_{i}^{2}$.
 ${ }^{14}$ Much more detailed explanations can be found in Newey (1985), Newey and West (1987), and the original Hansen (1982) GMM paper.

[^13]: ${ }^{15}$ If, for example, the instrument takes on three values, one of which is assigned to the constant, and the model includes a constant and a single the endogenous variable only, the test statistic has 1 degree of freedom.

[^14]: ${ }^{16}$ The Wald estimator and Wald test are named after the same statistician, Abraham Wald, but the latter reference is Wald (1943).
 ${ }^{17}$ The fact that Wald and LM testing procedures for the same null are equivalent in linear models was established by Newey and West (1987). Angrist (1991) gives a formal statement of the argument in this paragraph.

[^15]: ${ }^{18} \mathrm{~A}$ quadratic form is the matrix-weighted product, $x^{\prime} A x$, where x is a random vector of, say, dimension k and A is a $\mathrm{K} \times \mathrm{K}$ matrix of constants.
 ${ }^{19}$ Applications of TSIV include Bjorklund and Jantti (1997), Jappelli, Pischke, and Souleles (1998), Currie and Yelowitz (2000), and Dee and Evans (2003). In a recent paper, Inoue and Solon (2005) compare the asymptotic distributions of alternative TSIV estimators, and introduce a maximum likelihood (LIML-type) version of TSIV. They also correct a mistake in the distribution theory in Angrist and Krueger (1995), discussed further, below.

[^16]: ${ }^{20}$ Angrist and Krueger called this estimator SSIV because they were concerned with a scenario where a single data set is deliberately split in two. As discussed in Section 4.6.4, the resulting estimator may have less bias than conventional 2SLS. Inoue and Solon (2005) refer to the estimator Angrist and Krueger (1995) called SSIV as Two-sample 2SLS or TS2SLS.
 ${ }^{21}$ This shortcut formula uses the standard errors from the manual SSIV second stage. The correct asymptotic covariance matrix formula, from Inoue and Solon (2005), is

 $$
 \left\{B\left[\left(\sigma_{11}+\kappa \Gamma^{\prime} \Sigma_{22} \Gamma\right) A\right]^{-1} B\right\}^{-1}
 $$

 where $B=\operatorname{plim}\left(\frac{Z_{2}^{\prime} W_{2}}{N_{2}}\right)=\operatorname{plim}\left(\frac{Z_{1}^{\prime} W_{1}}{N_{1}}\right), A=\operatorname{plim}\left(\frac{Z_{1}^{\prime} Z_{1}}{N_{1}}\right)=\operatorname{plim}\left(\frac{Z_{2} Z_{2}}{N_{2}}\right), \operatorname{plim}\left(\frac{N_{2}}{N_{1}}\right)=\kappa, \sigma_{11}$ is the variance of the reduced-form residual in data set 1 , and Σ_{22} is the variance of the first-stage residual in data set 2 . In principle, these pieces are easy enough to calculate. Other approaches to SSIV inference include those of Dee and Evans (2003), who calculate standard errors for just-identified models using the delta-method, and Bjorklund and Jantti (1997), who use a bootstrap.

[^17]: ${ }^{22}$ The distinction between internal and external validity is relatively new to applied econometrics but has a long history in social science. See, for example, the chapter-length discussion in Shadish, Cook, and Campbell (2002), the successor to a classic text on research methods by Campbell and Stanley (1963).

[^18]: ${ }^{23}$ Hirano, Imbens, Rubin and Zhou (2000) note that the exclusion restriction that $\mathrm{Y}_{i}(d, z)$ equals $\mathrm{Y}_{i}\left(d, z^{\prime}\right)$ can be weakened to require only that the distributions of $\mathrm{Y}_{i}(d, z)$ and $\mathrm{Y}_{i}\left(d, z^{\prime}\right)$ be the same.
 ${ }^{24}$ As it turns out, there is not much of a relationship between schooling and lottery numbers in the Angrist and Krueger (1992) data, probably because educational deferments were phased out during the lottery period.

[^19]: ${ }^{25}$ Angrist (1990) interprets draft lottery estimates as the penalty for lost labor market experience. This suggests draft lottery estimates should have external validity for the effects of conscription in other periods, a conjecture born out by the results for WWII draftees in Angrist and Krueger (1994).

[^20]: ${ }^{27}$ Another application of IV to data from a randomized trial is Krueger (1999). This study uses randomly assigned class size as an instrument for actual class size with data from the Tennessee STAR experiment. For students in first grade and higher, actual class size differs from randomly assigned class size in the STAR experiment because parents and teachers move students around in years after the experiment began. Krueger 1999 also illustrates 2SLS applied to a model with variable treatment intensity, as discussed in section 4.5.3

[^21]: 28 In fact, maintaining the hypothesis that all instruments in an over-identified model are valid, the traditional overidentification test statistic becomes a formal test for treatment-effect heterogeneity.

[^22]: treated and untreated populations.

[^23]: ${ }^{29}$ A general method for constructing the mean or other features of the distribution of covariates for compliers uses Abadie's (2003) kappa-weighting scheme. For example,

 $$
 E\left[\mathrm{X}_{i} \mid \mathrm{D}_{1 i}>\mathrm{D}_{0 i}\right]=\frac{E\left[\kappa_{i} \mathrm{X}_{i}\right]}{E\left[\kappa_{i}\right]}
 $$

 where

 $$
 \kappa_{i}=1-\frac{\mathrm{D}_{i}\left(1-\mathrm{z}_{i}\right)}{1-P\left(\mathrm{z}_{i}=1 \mid \mathrm{X}_{i}\right)}-\frac{\left(1-\mathrm{D}_{i}\right) \mathrm{z}_{i}}{P\left(\mathrm{z}_{i}=1 \mathrm{X}_{i}\right)}
 $$

 This works because the weighting function, κ_{i}, "finds compliers," in a sense discussed in Section 4.5.2 , below.

