
Chapter 4

Instrumental Variables in Action:

Sometimes You Get What You Need

Anything that happens, happens.

Anything that, in happening, causes something else to happen,

causes something else to happen.

Anything that, in happening,

causes itself to happen again, happens again.

It doesn�t necessarily do it in chronological order, though.

Douglas Adams, Mostly Harmless (1995)

Two things distinguish the discipline of Econometrics from our older sister �eld of Statistics. One is a lack

of shyness about causality. Causal inference has always been the name of the game in applied econometrics.

Statistician Paul Holland (1986) cautions that there can be �no causation without manipulation,�a maxim

that would seem to rule out causal inference from non-experimental data. Less thoughtful observers fall

back on the truism that �correlation is not causality.�Like most people who work with data for a living,

we believe that correlation can sometimes provide pretty good evidence of a causal relation, even when the

variable of interest has not been manipulated by a researcher or experimenter. 1

The second thing that distinguishes us from most statisticians� and indeed most other social scientists�

is an arsenal of statistical tools that grew out of early econometric research on the problem of how to estimate

the parameters in a system of linear simultaneous equations. The most powerful weapon in this arsenal is

the method of Instrumental Variables (IV), the subject of this chapter. As it turns out, IV does more than

allow us to consistently estimate the parameters in a system of simultaneous equations, though it allows us

1Recent years have seen an increased willingness by statisticians to discuss statistical models for observational data in an

explicitly causal framework; see, for example, Freedman�s (2005) review.
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84 CHAPTER 4. INSTRUMENTAL VARIABLES IN ACTION

to do that as well.

Studying agricultural markets in the 1920s, the father and son research team of Phillip and Sewall

Wright were interested in a challenging problem of causal inference: how to estimate the slope of supply

and demand curves when observed data on prices and quantities are determined by the intersection of these

two curves. In other words, equilibrium prices and quantities� the only ones we get to observe� solve these

two stochastic equations at the same time. Upon which curve, therefore, does the observed scatterplot of

prices and quantities lie? The fact that population regression coe¢ cients do not capture the slope of any

one equation in a set of simultaneous equations had been understood by Phillip Wright for some time. The

IV method, �rst laid out in Wright (1928), solves the statistical simultaneous equations problem by using

variables that appear in one equation to shift this equation and trace out the other. The variables that do

the shifting came to be known as instrumental variables (Reiersol, 1941).

In a separate line of inquiry, IV methods were pioneered to solve the problem of bias from measurement

error in regression models2 . One of the most important results in the statistical theory of linear models is

that a regression coe¢ cient is biased towards zero when the regressor of interest is measured with random

errors (to see why, imagine the regressor contains only random error; then it will be uncorrelated with the

dependent variable, and hence the regression of yi on this variable will be zero). Instrumental variables

methods can be used to eliminate this sort of bias.

Simultaneous equations models (SEMs) have been enormously important in the history of econometric

thought. At the same time, few of today�s most in�uential applied papers rely on an orthodox SEM frame-

work, though the technical language used to discuss IV still comes from this framework. Today, we are

more likely to �nd IV used to address measurement error problems than to estimate the parameters of an

SEM. Undoubtedly, however, the most important contemporary use of IV is to solve the problem of omitted

variables bias. IV solves the problem of missing or unknown control variables, much as a randomized trial

obviates the need for extensive controls in a regression.3

4.1 IV and causality

We like to tell the IV story in two iterations, �rst in a restricted model with constant e¤ects, then in

a framework with unrestricted heterogeneous potential outcomes, in which case causal e¤ects must also be

heterogeneous. The introduction of heterogeneous e¤ects enriches the interpretation of IV estimands, without

changing the mechanics of the core statistical methods we are most likely to use in practice (typically, two-

stage least squares). An initial focus on constant e¤ects allows us to explain the mechanics of IV with a

2Key historical references here are Wald (1940) and Durbin (1954), both discussed below.
3See Angrist and Krueger (2001) for a brief exposition of the history and uses of IV; Stock and Trebbi (2003) for a detailed

account of the birth of IV; and Morgan (1990) for an extended history of econometric ideas, including the simultaneous equations

model.
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minimum of fuss.

To motivate the constant-e¤ects setup as a framework for the causal link between schooling and wages,

suppose, as before, that potential outcomes can be written

ysi � fi (s) ;

and that

fi (s) = �0 + �1s+ �i; (4.1.1)

as in the introduction to regression in Chapter 3. Also, as in the earlier discussion, imagine that there is a

vector of control variables, Ai, called �ability�, that gives a selection-on-observables story:

�i = A0i
 + vi;

where 
 is again a vector of population regression coe¢ cients, so that vi and Ai are uncorrelated by con-

struction. For now, the variables Ai, are assumed to be the only reason why �i and si are correlated, so

that

E[sivi] = 0:

In other words if Ai were observed, we would be happy to include it in the regression of wages on schooling;

thereby producing a long regression that can be written

yi = �+ �si +A0i
 + vi: (4.1.2)

Equation (4.1.2) is a version of the linear causal model, (3.2.9). The error term in this equation is the

random part of potential outcomes, vi, left over after controlling for Ai. This error term is uncorrelated with

schooling by assumption. If this assumption turns out to be correct, the population regression of yi on si

and Ai produces the coe¢ cients in (4.1.2).

The problem we initially want to tackle is how to estimate the long-regression coe¢ cient, �, when Ai is

unobserved. Instrumental variables methods can be used to accomplish this when the researcher has access

to a variable (the instrument, which we�ll call zi), that is correlated with the causal variable of interest, si,

but uncorrelated with any other determinants of the dependent variable. Here, the phrase "uncorrelated

with any other determinants of the dependent variables" is like saying Cov(�i;zi) = 0; or, equivalently, zi

is uncorrelated with both Ai and vi. This statement is called an exclusion restriction since zi can be said

to be excluded from the causal model of interest. The exclusion restriction is a version of the conditional

independence assumption of the previous chapter, except that now it is the instrument which is independent

of potential outcomes, instead of schooling itself (the "conditional" in conditional independence enters into



86 CHAPTER 4. INSTRUMENTAL VARIABLES IN ACTION

the discussion when we consider IV models with covariates).

Given the exclusion restriction, it follows from equation (4.1.2) that

� =
Cov(yi; zi)
Cov(si; zi)

=
Cov(yi; zi)=V (zi)
Cov(si; zi)=V (zi)

: (4.1.3)

The second equality in (4.1.3) is useful because it�s usually easier to think in terms of regression coe¢ cients

than in terms of covariances. The coe¢ cient of interest, �, is the ratio of the population regression of yi on zi

(the reduced form) to the population regression of si on zi (the �rst stage). The IV estimator is the sample

analog of expression (4.1.3). Note that the IV estimand is predicated on the notion that the �rst stage is

not zero, but this is something you can check in the data. As a rule, if the �rst stage is only marginally

signi�cantly di¤erent from zero, the resulting IV estimates are unlikely to be informative, a point we return

to later.

It�s worth recapping the assumptions needed for the ratio of covariances in (4.1.3) to equal the casual

e¤ect, �: First, the instrument must have a clear e¤ect on si. This is the �rst stage. Second, the only

reason for the relationship between yi and zi is the �rst-stage. For the moment, we�re calling this second

assumption the exclusion restriction, though as we�ll see in the discussion of models with heterogeneous

e¤ects, this assumption really has two parts: the �rst is the statement that the instrument is as good as

randomly assigned (i.e., independent of potential outcomes, conditional on covariates), while the second is

that the instrument has no e¤ect on outcomes other than through the �rst-stage channel.

So where can you �nd an instrumental variable? Good instruments come from institutional knowledge

and your ideas about the processes determining the variable of interest. For example, the economic model

of education suggests that educational attainment is determined by comparing the costs and bene�ts of

alternative choices. Thus, one possible source of instruments for schooling is di¤erences in costs due, say,

to loan policies or other subsidies that vary independently of ability or earnings potential. A second source

of variation in schooling is institutional constraints. A set of institutional constraints relevant for schooling

are compulsory schooling laws. Angrist and Krueger (1991) exploit the variation induced by compulsory

schooling in a paper that typi�es the use of �natural experiments�to try to eliminate omitted variables bias

The starting point for the Angrist and Krueger (1991) quarter-of-birth strategy is the observation that

most states required students to enter school in the calendar year in which they turn 6. School start age is

therefore a function of date of birth. Speci�cally, those born late in the year are young for their grade. In

states with a December 31st birthday cuto¤, children born in the fourth quarter enter school shortly before

they turn 6, while those born in the �rst quarter enter school at around age 6 12 . Furthermore, because

compulsory schooling laws typically require students to remain in school only until their 16th birthday, these

groups of students will be in di¤erent grades or through a given grade to di¤erent degree, when they reach

the legal dropout age. In essence, the combination of school start age policies and compulsory schooling laws
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creates a natural experiment in which children are compelled to attend school for di¤erent lengths of time

depending on their birthdays.

Angrist and Krueger looked at the relationship between educational attainment and quarter of birth

using US census data. Panel A of Figure 4.1.1 (adapted from Angrist and Krueger, 2001) displays the

education-quarter-of-birth pattern for men in the 1980 Census who were born in the 1930s. The �gure

clearly shows that men born earlier in the calendar year tend to have lower average schooling levels. Panel

A of Figure 4.1.1 is a graphical representation of the �rst-stage. The �rst-stage in a general IV framework

is the regression of the causal variable of interest on covariates and the instrument(s). The plot summarizes

this regression because average schooling by year and quarter of birth is what you get for �tted values from

a regression of schooling on a full set of year-of-birth and quarter-of-birth dummies.

Panel B of Figure 4.1.1 displays average earnings by quarter of birth for the same sample used to

construct panel A. This panel illustrates what econometricians call the �reduced form�relationship between

the instruments and the dependent variable. The reduced form is the regression of the dependent variable

on any covariates in the model and the instrument(s). Panel B shows that older cohorts tend to have higher

earnings, because earnings rise with work experience. The �gure also shows that men born in early quarters

almost always earned less, on average, than those born later in the year, even after adjusting for year of

birth, which plays the role of an exogenous covariate in the Angrist and Krueger (1991) setup. Importantly,

this reduced-form relation parallels the quarter-of-birth pattern in schooling, suggesting the two patterns

are closely related. Because an individual�s date of birth is probably unrelated to his or her innate ability,

motivation, or family connections, it seems credible to assert that the only reason for the up-and-down

quarter-of-birth pattern in earnings is indeed the up-and-down quarter-of-birth pattern in schooling. This

is the critical assumption that drives the quarter-of-birth IV story.4

A mathematical representation of the story told by Figure 4.1.1 comes from the �rst-stage and reduced-

form regression equations, spelled out below:

si = X0i�10 + �11zi + �1i (4.1.4a)

yi = X0i�20 + �21zi + �2i (4.1.4b)

The parameter �11 in equation (4.1.4a) captures the �rst-stage e¤ect of zi on si, adjusting for covariates,

4Other explanations are possible, the most likely being some sort of family background e¤ect associated with season of birth

(see, e.g., Bound, Jaeger, and Baker, 1995). Weighing against the possibility of omitted family background e¤ects is the

fact that the quarter of birth pattern in average schooling is much more pronounced at the schooling levels most a¤ected by

compulsory attendance laws. Another possible concern is a pure age-at-entry e¤ect which operates through channels other

than highest grade completed (e.g., achievement). The causal e¤ect of age-at-entry on learning is di¢ cult, if not impossible, to

separate from pure age e¤ects, as noted in Chapter 1). A recent study by Elder and Lubotsky (2008) argues that the evolution

of putative age-at-entry e¤ects over time is more consistent with e¤ects due to age di¤erences per se than to a within-school

learning advantage for older students.
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A Average Education by Quarter of Birth (first stage)

3
3

4
3 4

1

2
3

4

1

2

3

4

12 9

13

13.1

13.2

A. Average Education by Quarter of Birth (first stage)

A. Average Education by Quarter of Birth (first stage)
2

3

4

1 2

3

4

1

2

3

4

1
2

3

4

1

2 3

4

1

2
4

1

2

1 2

1

12.5

12.6

12.7

12.8

12.9

Y
e
a
rs

 o
f 

E
d

u
c
a
ti

o
n

2

1

1 2 1

12.2

12.3

12.4

30 31 32 33 34 35 36 37 38 39

Year of Birth

5.94

Year of Birth

B. Average Weekly Wage by Quarter of Birth (reduced form)

B. Average Weekly Wage by Quarter of Birth (reduced form)

3

4
3 4 3

2

3

4
3

4 3

4

3
4

3
4

2 3

4

2
45.91

5.92

5.93

a
rn

in
g

s

2

1

1
2 1 2 4

1

2

1

2

1

2

4

1

2

1

2

1

1

3

5.88

5.89

5.9

L
o

g
 W

e
e
k
ly

 E
a

5.86

5.87

30 31 32 33 34 35 36 37 38 39

Year of Birth

Figure 4.1.1: Graphical depiction of �rst stage and reduced form for IV estimates of the economic return to

schooling using quarter of birth (from Angrist and Krueger 1991).
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Xi. The parameter �21 in equation (4.1.4b) captures the reduced-form e¤ect of zi on yi, adjusting for these

same covariates. In the language of the SEM, the dependent variables in these two equations are said to be

the endogenous variables (where they are determined jointly within the system) while the variables on the

right-hand side are said to be the exogenous variables (determined outside the system). The instruments, zi,

are a subset of the exogenous variables. The exogenous variables that are not instruments are said to be

exogenous covariates. Although we�re not estimating a traditional supply and demand system in this case,

these SEM variable labels are still widely used in empirical practice.

The covariate-adjusted IV estimator is the sample analog of the ratio �21
�11
. To see this, note that the

denominators of the reduced-form and �rst-stage e¤ects are the same. Hence, their ratio is

� =
�21
�11

=
Cov(yi; ~zi)
Cov(si; ~zi)

; (4.1.5)

where ~zi is the residual from a regression of zi on the exogenous covariates, Xi. The right-hand side of

(4.1.5) therefore swaps ~zi for zi in the general IV formula, (4.1.3). Econometricians call the sample analog

of the left-hand side of equation (4.1.5) an Indirect Least Squares (ILS) estimator of � in the causal model

with covariates,

yi = �0Xi + �si + �i; (4.1.6)

where �i is the compound error term, A
0
i
 + vi

5 . It�s easy to use equation (4.1.6) to con�rm directly that

Cov(yi; ~zi) = �Cov(si; ~zi) since ~zi is uncorrelated with Xi by construction and with �i by assumption. In

Angrist and Krueger (1991), the instrument, zi, is quarter of birth (or dummies indicating quarters of birth)

and the covariates are dummies for year of birth, state of birth, and race.

4.1.1 Two-Stage Least Squares

The reduced-form equation, (4.1.4b), can be derived by substituting the �rst stage equation, (4.1.4a), into

the causal relation of interest, (4.1.6), which is also called a �structural equation�in simultaneous equations

language. We then have:

yi = �0Xi + �[X
0
i�10 + �11zi + �1i] + �i (4.1.7)

= X0i[�+ ��10] + ��11zi + [��1i + �i]

= X0i�20 + �21zi + �2i;

5For a direct proof that (4.1.5) equals � in (4.1.6), use (4.1.6) to substitute for yi in
Cov(yi;~zi)
Cov(si;~zi)

.
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where �20 � � + ��10, �21 � ��11, and �2i � ��1i + �i in equation (4.1.4b). Equation (4.1.7) again shows

why � = �21
�11
. Note also that a slight re-arrangement of (4.1.7) gives

yi = �0Xi + �[X
0
i�10 + �11zi] + �2i; (4.1.8)

where [X0i�10 + �11zi] is the population �tted value from the �rst-stage regression of si on Xi and zi.

Because zi and Xi are uncorrelated with the reduced-form error, �2i, the coe¢ cient on [X
0
i�10 + �11zi] in

the population regression of yi on Xi and [X0i�10 + �11zi] equals �.

In practice, of course, we almost always work with data from samples. Given a random sample, the

�rst-stage �tted values in the population are consistently estimated by

ŝi = X
0
i�̂10 + �̂11zi;

where �̂10 and �̂11 are OLS estimates from equation (4.1.4a). The coe¢ cient on ŝi in the regression of yi

on Xi and ŝi is called the Two-Stage Least Squares (2SLS) estimator of �. In other words, 2SLS estimates

can be constructed by OLS estimation of the �second-stage equation,�

yi = �0Xi + �ŝi + [�i + �(si � ŝi)]; (4.1.9)

This is called 2SLS because it can be done in two steps, the �rst estimating ŝi using equation (4.1.4a), and

the second estimating equation (4.1.9). The resulting estimator is consistent for � because (a) �rst-stage

estimates are consistent; and, (b) the covariates, Xi, and instruments, zi, are uncorrelated with both �i and

(si � ŝi).

The 2SLS name notwithstanding, we don�t usually construct 2SLS estimates in two-steps. For one thing,

the resulting standard errors are wrong, as we discuss later. Typically, we let specialized software routines

(such as are available in SAS or Stata) do the calculation for us. This gets the standard errors right and

helps to avoid other mistakes (see Section 4.6.1, below). Still, the fact that the 2SLS estimator can be

computed by a sequence of OLS regressions is one way to remember why it works. Intuitively, conditional

on covariates, 2SLS retains only the variation in si that is generated by quasi-experimental variation, i.e.,

generated by the instrument, zi.

2SLS is a many-splendored thing. For one, it is an instrumental variables estimator: the 2SLS estimate

of � in (4.1.9) is the sample analog of Cov(yi;ŝ
�
i )

Cov(si;ŝ�i )
, where ŝ�i is the residual from a regression of ŝi on Xi. This

follows from the multivariate regression anatomy formula and the fact that Cov(si; ŝ�i ) = V (ŝ�i ). It is also

easy to show that, in a model with a single endogenous variable and a single instrument, the 2SLS estimator

is the same as the corresponding ILS estimator.6

6Note that ŝ�i = ~zi�̂11, where ~zi is the residual from a regression of zi on Xi, so that the 2SLS estimator is therefore the
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The link between 2SLS and IV warrants a bit more elaboration in the multi-instrument case. Assuming

each instrument captures the same causal e¤ect (a strong assumption that is relaxed below), we might want

to combine these alternative IV estimates into a single more precise estimate. In models with multiple

instruments, 2SLS provides just such a linear combination by combining multiple instruments into a single

instrument. Suppose, for example, we have three instrumental variables, z1i, z2i, and z3i. In the Angrist and

Krueger (1991) application, these are dummies for �rst, second, and third-quarter births. The �rst-stage

equation then becomes

si = X
0
i�10 + �11z1i + �12z2i + �13z3i + �1i; (4.1.10a)

while the 2SLS second stage is the same as (4.1.9), except that the �tted values are from (4.1.10a) instead of

(4.1.4a). The IV interpretation of this 2SLS estimator is the same as before: the instrument is the residual

from a regression of �rst-stage �tted values on covariates. The exclusion restriction in this case is the claim

that all of the quarter of birth dummies in (4.1.10a) are uncorrelated with �i in equation equation (4.1.6).

The results of 2SLS estimation of a schooling equation using three quarter-of-birth dummies, as well as

other interactions, are shown in Table 4.1.1, which reports OLS and 2SLS estimates of models similar to

those estimated by Angrist and Krueger (1991). Each column in the table contains OLS and 2SLS estimates

of � from an equation like (4.1.6), estimated with di¤erent combinations of instruments and control variables.

The OLS estimate in column 1 is from a regression of log wages with no control variables, while the OLS

estimates in column 2 are from a model adding dummies for year of birth and state of birth as control

variables. In both cases, the estimated return to schooling is around .075.

sample analog of

h
Cov(yi;~zi)

V (~zi)

i
�̂11

. But the sample analog of the numerator, Cov(yi;~zi)
V (~zi)

, is the OLS estimate of �21 in the reduced

form, (4.1.4b), while �̂11 is the OLS estimate of the �rst-stage e¤ect, �11, in (4.1.4a). Hence, 2SLS with a single instrument is

ILS, i.e., the ratio of the reduced form-e¤ect of the instrument to the corresponding �rst-stage e¤ect where both the �rst-stage

and reduced-form include covariates.
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The �rst pair of IV estimates, reported in columns 3 and 4, are from models without controls. The

instrument used to construct the estimates in column 1 is a single dummy for �rst quarter births, while the

instruments used to construct the estimates in column 2 are a pair of dummies indicating �rst and second

quarter births. The standard error estimates range from .10 �.11. The results from models including year

of birth and state of birth dummies as control variables are similar, not surprisingly, since quarter of birth

is not closely related to either of these controls. Overall, the 2SLS estimates are mostly a bit larger than the

corresponding OLS estimates. This suggests that the observed associated between schooling and earnings is

not driven by omitted variables like ability and family background.

Column 7 in Table 4.1.1 shows the results of adding interaction terms to the instrument list. In particular,

each speci�cation adds interaction with 9 dummies for year of birth (the sample includes cohorts born 1930-

39), for a total of 30 excluded instruments. The �rst stage equation becomes

si = X0i�10 + �11z1i + �12z2i + �13z3i (4.1.10b)

+
X
j

(bijz1i)�1j +
X
j

(bijz2i)�2j +
X
j

(bijz3i)�3j + �1i

where bij is a dummy equal to one if individual i was born in year j for j equal to 1931 �39. The coe¢ cients

�1j ; �2j ; �3j are the corresponding year-of-birth interactions. These interaction terms capture di¤erences in

the relation between quarter-of-birth and schooling across cohorts. The rationale for adding these interaction

terms is an increase in precision that comes from increasing the �rst-stage R2, which goes up because the

quarter of birth pattern in schooling di¤ers across cohorts. In this example, the addition of interaction

terms to the instrument list leads to a modest gain in precision; the standard error declines from .0194 to

.0161.7

The last 2SLS model reported in Table 4.1.1 includes controls for linear and quadratic terms in age-in-

quarters in the list of covariates, Xi. In other words, someone who was born in the �rst quarter of 1930 is

recorded as being 50 years old on census day (April 1), 1980, while someone born in the fourth quarter is

recorded as being 49.25 years old. This �nely coded age variable, entered into the model with a linear and

quadratic term, provides a partial control for the fact that small di¤erences age may be an omitted variable

that confounds the quarter-of-birth identi�cation strategy. As long as the e¤ects of age are similarly smooth,

the quadratic age-in-quarters model will pick them up.

This variation in the 2SLS set-up illustrates the inter-play between identi�cation and estimation. For

the 2SLS procedure to work, there must be some variation in the �rst-stage �tted values conditional on

whatever control variables (covariates) are included in the model. If the �rst-stage �tted values are a linear

combination of the included covariates, then the 2SLS estimate simply does not exist. In equation (4.1.9) this

7This gain may not be without cost, as the use of many additional instruments opens up the possibility of increased bias,

an issue discussed in Chapter 8, below.
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is manifest by perfect multicollinearity. 2SLS estimates with quadratic age exist. But the variability �left

over�in the �rst-stage �tted values is reduced when the covariates include variables like age in quarters, that

are closely related to the instruments (quarter of birth dummies). Because this variability is the primary

determinant of 2SLS standard errors, the estimate in column 8 is markedly less precise than that in column

7, though it is still close to the corresponding OLS estimate.

Recap of IV and 2SLS Lingo

As we�ve seen, the endogenous variables are the dependent variable and the independent variable(s) to be

instrumented; in a simultaneous equations model, endogenous variables are determined by solving a system

of stochastic linear equations. To treat an independent variable as endogenous is to instrument it, i.e., to re-

place it with �tted values in the second stage of a 2SLS procedure. The independent endogenous variable in

the Angrist and Krueger (1991) study is schooling. The exogenous variables include the exogenous covariates

that are not instrumented and the instruments themselves. In a simultaneous equations model, exogenous

variables are determined outside the system. The exogenous covariates in the Angrist and Krueger (1991)

study are dummies for year of birth and state of birth. We think of exogenous covariates as controls. 2SLS

a�cionados live in a world of mutually exclusive labels: in any empirical study involving instrumental vari-

ables, the random variables to be studied are either dependent variables, independent endogenous variables,

instrumental variables, or exogenous covariates. Sometimes we shorten this to: dependent and endogenous

variables, instruments and covariates (fudging the fact that the dependent variable is also endogenous in a

traditional SEM).

4.1.2 The Wald Estimator

The simplest IV estimator uses a single binary (0-1) instrument to estimate a model with one endogenous

regressor and no covariates. Without covariates, the causal regression model is

yi = �+ �si + �i; (4.1.11)

where �i and si may be correlated. Given the further simpli�cation that zi is a dummy variable that equals

1 with probability p, we can easily show that

Cov(yi; zi) = fE[yijzi = 1]� E[yijzi = 0]gp(1� p);

with an analogous formula for Cov(si;zi). It therefore follows that

� =
E[yijzi = 1]� E[yijzi = 0]
E[sijzi = 1]� E[sijzi = 0]

: (4.1.12)
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A direct route to this result uses (4.1.11) and the fact that E[�ijzi] = 0, so we have

E[yijzi] = �+ �E[sijzi]: (4.1.13)

Solving this equation for � produces (4.1.12).

Equation (4.1.12) is the population analog of the landmark Wald (1940) estimator for a bivariate regres-

sion with mismeasured regressors.8 The Wald estimator is the sample analog of this expression. In our

context, the Wald formula provides an appealingly transparent implementation of the IV strategy for the

elimination of omitted variables bias. The principal claim that motivates IV estimation of causal e¤ects is

that the only reason for any relation between the dependent variable and the instrument is the e¤ect of the

instrument on the causal variable of interest. In the context of a binary instrument, it therefore seems nat-

ural to divide� or rescale� the reduced-form di¤erence in means by the corresponding �rst-stage di¤erence

in means.

The Angrist and Krueger (1991) study using quarter of birth to estimate the economic returns to schooling

shows the Wald estimator in action. Table 4.1.2 displays the ingredients behind a Wald estimate constructed

using the 1980 census. The di¤erence in earnings between men born in the �rst and second halves of the

year is -.01349 (s.e.=.00337), while the corresponding di¤erence in schooling is -.1514. The ratio of these two

di¤erences is a Wald estimate of the economic value of schooling in per-year terms. This comes out to be

.0891 (s.e.=.021). Not surprisingly, this estimate is not too di¤erent from the 2SLS estimates in Table 4.1.1.

The reason we should expect the Wald and 2SLS estimates to be similar is that they are both constructed

from the same information: di¤erences in earnings by season of birth.

The Angrist (1990) study of the e¤ects of Vietnam-era military service on the earnings of veterans also

shows the Wald estimator in action. In the 1960s and early 1970s, young men were at risk of being drafted for

military service. Concerns about the fairness of US conscription policy led to the institution of a draft lottery

in 1970 that was used to determine priority for conscription. A promising instrumental variable for Vietnam

veteran status is therefore draft-eligibility, since this was determined by a lottery over birthdays. Speci�cally,

in each year from 1970 to 1972, random sequence numbers (RSNs) were randomly assigned to each birth date

in cohorts of 19-year-olds. Men with lottery numbers below an eligibility ceiling were eligible for the draft,

while men with numbers above the ceiling could not be drafted. In practice, many draft-eligible men were

still exempted from service for health or other reasons, while many men who were draft-exempt nevertheless

volunteered for service. So veteran status was not completely determined by randomized draft-eligibility,

8As noted in the introduction to this chapter, measurement error in regressors tends to shrink regression coe¢ cients towards

zero. To eliminate this bias, Wald (1940) suggested that the data be divided in a manner independent of the measurement

error, and the coe¢ cient of interest estimated as a ratio of di¤erences in means as in (4.1.12). Durbin (1954) showed that

Wald�s method of �tting straight lines is an IV estimator where the instrument is a dummy marking Wald�s division of the

data. Hausman (2001) provides an overview of econometric strategies for dealing with measurement error.
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Table 4.1.2: Wald estimates of the returns to schooling using quarter of birth instruments
(1) (2) (3)

Born in the 1st
or 2nd quarter of
year

Born in the 3rd
or 4th quarter of
year

Di¤erence
(std. error)
(1)-(2)

ln (weekly wage) 5.8916 5.9051 -0.01349
(0.00337)

Years of education 12.6881 12.8394 -0.1514
(0.0162)

Wald estimate of
return to education

0.0891
(0.0210)

OLS estimate of
return to education

0.0703
(0.0005)

Notes: Adapted from a re-analysis of Angrist and Krueger (1991) by Angrist and

Imbens (1995). The sample includes native-born men with positive earnings from

the 1930-39 birth cohorts in the 1980 Census 5 percent �le. The sample size is

329,509.

but draft-eligibility provides a binary instrument highly correlated with Vietnam-era veteran status.

For white men who were at risk of being drafted in the 1970 draft lottery, draft-eligibility is clearly

associated with lower earnings in years after the lottery. This is documented in Table 4.1.3, which reports the

e¤ect of randomized draft-eligibility status on average Social Security-taxable earnings in column 2. column

1 shows average annual earnings for purposes of comparison. For men born in 1950, there are signi�cant

negative e¤ects of eligibility status on earnings in 1971, when these men were mostly just beginning their

military service, and, perhaps more surprisingly, in 1981, ten years later. In contrast, there is no evidence

of an association between draft-eligibility status and earnings in 1969, the year the lottery drawing for men

born in 1950 was held but before anyone born in 1950 was actually drafted.

Because eligibility status was randomly assigned, the claim that the estimates in column 2 represent

the e¤ect of draft-eligibility on earnings seems uncontroversial. The information required to go from draft-

eligibility e¤ects to veteran-status e¤ects is the denominator of the Wald estimator, which is the e¤ect of

draft-eligibility on the probability of serving in the military. This information is reported in column 3 of

Table 4.1.3, which shows that draft-eligible men were almost 16 percentage points more likely to have served

in the Vietnam era. The Wald estimate of the e¤ect of military service on 1981 earnings, reported in column

4, amounts to about 15 percent of the mean. E¤ects were even larger in 1971 (in percentage terms), when

a¤ected soldiers were still in the army.

An important feature of the Wald/IV estimator is that the identifying assumptions are easy to assess and
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Table 4.1.3: Wald estimates of the e¤ects of military service on the earnings of white men born in 1950

Earnings Veteran Status Wald
Estimate of
Veteran
E¤ect

Earnings year Mean Eligibility
E¤ect

Mean Eligibility
E¤ect

(1) (2) (3) (4) (5)

1981 16,461 -435.8 0.267 0.159 -2,741
(210.5) (0.040) (1,324)

1971 3,338 -325.9 -2050
(46.6) (293)

1969 2,299 -2.0
(34.5)

Notes: Adapted from Angrist (1990), Tables 2 and 3. Standard errors are shown

in parentheses. Earnings data are from Social Security administrative records. Fig-

ures are in nominal dollars. Veteran status data are from the Survey of Program

Participation. There are about 13,500 individuals in the sample.

interpret. Suppose di denotes Vietnam-era veteran status and zi indicates draft-eligibility. The fundamental

claim justifying our interpretation of the Wald estimator as capturing the causal e¤ect of di is that the only

reason why E[yijzi] changes as zi changes is the variation in E[dijzi]. A simple check on this is to look for

an association between zi and personal characteristics that should not be a¤ected by di, for example, age,

race, sex, or any other characteristic that was determined before di was determined. Another useful check

is to look for an association between the instrument and outcomes in samples where there is no relationship

between di and zi. If the only reason for draft-eligibility a¤ects on earnings is veteran status, then draft-

eligibility e¤ects on earnings should be zero in samples where draft-eligibility status is unrelated to veteran

status.

This idea is illustrated in the Angrist (1990) study of the draft lottery by looking at 1969 earnings,

an estimate repeated in the last row of Table 4.1.3. It�s comforting that the draft-eligibility treatment

e¤ect on 1969 earnings is zero since 1969 earnings predate the 1970 draft lottery. A second variation on

this idea looks at the cohort of men born in 1953. Although there was a lottery drawing which assigned

RSNs to the 1953 birth cohort in February of 1972, no one born in 1953 was actually drafted (the draft

o¢ cially ended in July of 1973). The �rst-stage relationship between draft-eligibility and veteran status for

men born in 1953 (de�ned using the 1952 lottery cuto¤ of 95) therefore shows only a small di¤erence in

the probability of serving by eligibility status. Importantly, there is also no signi�cant relationship between

earnings and draft-eligibility status for men born in 1953, a result that supports the claim that the only

reason for draft-eligibility e¤ects is military service.
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We conclude the discussion of Wald estimators with a set of IV estimates of the e¤ect of family size on

mothers�employment and work. Like the schooling and military service studies, these estimates are used

for illustration elsewhere in the book. The relationship between fertility and labor supply has long been of

interest to labor economists, while the case for omitted variables bias in this context is clear: mothers with

weak labor force attachment or low earnings potential may be more likely to have children than mothers

with strong labor force attachment or high earnings potential. This makes the observed association between

family size and employment hard to interpret since mothers who have big families may have worked less

anyway. Angrist and Evans (1998) solve this omitted-variables problem using two instrumental variables,

both of which lend themselves to Wald-type estimation strategies.

The �rst Wald estimator uses multiple births, an identi�cation strategy for the e¤ects of family size

pioneered by Rosenzweig and Wolpin (1980). The twins instrument in Angrist and Evans (1998) is a

dummy for a multiple third birth in a sample of mothers with at least two children. The twins �rst-stage

is .625, an estimate reported in column 3 of Table 4.1.4. This means that 37.5 percent of mothers with

two or more children would have had a third birth anyway; a multiple third birth increases this proportion

to 1. The twins instrument rests on the idea that the occurrence of a multiple birth is essentially random,

unrelated to potential outcomes or demographic characteristics.

The second Wald estimator in Table 4.1.4 uses sibling sex composition, an instrument motivated by the

fact that American parents with two children are much more likely to have a third child if the �rst two

are same-sex than if the sex-composition is mixed. This is illustrated in column 5 of Table 4.1.4, which

shows that parents of same-sex sibling birth are 6.7 percentage points more likely to have a third birth (the

probability of a third birth among parents with a mixed-sex sibship is .38). The same-sex instrument is

based on the claim that sibling sex composition is essentially random and a¤ects family labor supply solely

by increasing fertility.

Twins and sex-composition instruments both suggest that the birth of a third child has a large e¤ect

on employment rates and on weeks and hours worked. Wald estimates using twins instruments show a

precisely-estimate employment reduction of about .08, while weeks worked fall by 3.8 and hours per week

fall by 3.4. These results, which appear in column 4 of Table 4.1.4, are smaller in absolute value than the

corresponding OLS estimates reported in column 2. This suggests the latter are exaggerated by selection

bias. Interestingly, the Wald estimates constructed using a same-sex dummy, reported in column 6, are

larger than the twins estimates. The juxtaposition of twins and sex-composition instruments in Table 4.1.4

suggests that di¤erent instruments need not generate similar estimates of causal e¤ects even if both are

valid. We expand on this important point in Section 4.4. For now, however, we stick with a constant-e¤ects

framework.
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4.1.3 Grouped Data and 2SLS

The Wald estimator is the mother of all instrumental variables estimators because more complicated 2SLS

estimators can typically be constructed from an underlying set of Wald estimators. The link between Wald

and 2SLS is grouped-data: 2SLS using dummy instruments is the same thing as GLS on a set of group

means. GLS in turn can be understood as a linear combination of all the Wald estimators that can be

constructed from pairs of means. The generality of this link might appear to be limited by the presumption

that the instruments at hand are dummies. Not all instrumental variables are dummies, or even discrete,

but this is not really important. For one thing, many credible instruments can be thought of as de�ning

categories, such as quarter of birth. Moreover, instrumental variables that appear more continuous (such as

draft lottery numbers, which range from 1-365) can usually be grouped without much loss of information

(for example, a single dummy for draft-eligibility status, or dummies for groups of 25 lottery numbers).9

To explain the Wald/grouping/2SLS nexus more fully, we stick with the draft-lottery study. Earlier we

noted that draft-eligibility is a promising instrument for Vietnam-era veteran status. The draft-eligibility

ceilings were RSN 195 for men born in 1950, RSN 125 for men born in 1951, and RSN 95 for men born in

1952. In practice, however, there is a richer link between draft lottery numbers (which we�ll call ri, short

for RSN) and veteran status (di) than draft-eligibility status alone. Although men with numbers above the

eligibility ceiling were not drafted, the ceiling was unknown in advance. Some men therefore volunteered

in the hope of serving under better terms and gaining some control over the timing of their service. The

pressure to become a draft-induced volunteer was high for men with low lottery numbers, but low for men

with high numbers. As a result, there is variation in P [di = 1jri] even for values strictly above or below the

draft-eligibility cuto¤. For example, men born in 1950 with lottery numbers 200 �225 were more likely to

serve than those with lottery numbers 226 �250, though ultimately no one in either group was drafted.

The Wald estimator using draft-eligibility as an instrument for men born in 1950 compares the earnings

of men with ri < 195 to the earnings of men with ri > 195. But the previous discussion suggests the

possibility of many more comparisons, for example men with ri � 25 vs. men with ri 2 [26 � 50]; men

with ri 2 [51� 75] vs. men with ri 2 [76� 100], and so on, until these 25-number intervals are exhausted.

We might also make the intervals �ner, comparing, say, men in 5-number or single-number intervals instead

of 25-number intervals. The result of this expansion in the set of comparisons is a set of Wald estimators.

These sets are complete in that the intervals partition the support of the underlying instrument, while the

individual estimators are linearly independent in the sense that their numerators are linearly independent.

Finally, each of these Wald estimators consistently estimates the same causal e¤ect, assumed here to be

constant, as long as ri is independent of potential outcomes and correlated with veteran status (i.e., the

Wald denominators are not zero).

9An exception is the classical measurement error model, where both the variable to be instrument and the instrument are

assumed to be continuous. Here, we have in mind IV scenarios involving omitted variables bias.
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The possibility of constructing multiple Wald estimators for the same causal e¤ect naturally raises the

question of what to do with all of them. We would like to come up with a single estimate that somehow

combines the information in the individual Wald estimates e¢ ciently. As it turns out, the most e¢ cient

linear combination of a full set of linearly independent Wald estimates is produced by �tting a line through

the group means used to construct these estimates.

The grouped data estimator can be motivated directly as follows. As in (4.1.11), we work with a bivariate

constant-e¤ects model, which in this case can be written

yi = �+ �di + �i; (4.1.14)

where � =y1i�y0i is the causal e¤ect of interest and y0i = � + �i. Because ri was randomly assigned and

lottery numbers are assumed to have no e¤ect on earnings other than through veteran status, E[�ijri] = 0.

It therefore follows that

E[yijri] = �+ �P [di = 1jri]; (4.1.15)

since P [di = 1jri] = E[dijri]. In other words, the slope of the line connecting average earnings given lottery

number with the average probability of service by lottery number is equal to the e¤ect of military service,

�. This is in spite of the fact that the regression yi on di� in this case, the di¤erence in means by veteran

status� almost certainly di¤ers from � since y0i and di are likely to be correlated.

Equation (4.1.15) suggests an estimation strategy based on �tting a line to the sample analog of E[yijri]

and P [di = 1jri]. Suppose that ri takes on values j = 1; :::;j. In principle, j might run from 1 to 365, but

in Angrist (1990), lottery-number information was aggregated to 69 �ve-number intervals, plus a 70th for

numbers 346-365. We can therefore think of ri as running from 1 to 70. Let �yj and p̂j denote estimates of

E[yijri = j] and P [di = 1jri = j], while ��j denotes the average error in (4.1.14). Because sample moments

converge to population moments it follows that OLS estimates of � in the grouped equation

�yj = �+ �p̂j + ��j (4.1.16)

are consistent. In practice, however, GLS may be preferable since a grouped equation is heteroskedastic with

a known variance structure. The e¢ cient GLS estimator for grouped data in a constant-e¤ects linear model

is weighted least squares, weighted by the variance of ��j (see, e.g., Prais and Aitchison, 1954 or Wooldridge,

2006). Assuming the microdata residual is homoskedastic with variance �2�, this variance is
�2�
nj
, where nj is

the group size.

The GLS (or weighted least squares) estimator of � in equation (4.1.16) is especially important in this

context for two reasons. First, the GLS slope estimate constructed from j grouped observations is an

asymptotically e¢ cient linear combination of any full set of j�1 linearly independent Wald estimators
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(Angrist, 1991). This can be seen without any mathematics: GLS and any linear combination of pairwise

Wald estimators are both linear combinations of the grouped dependent variable. Moreover, GLS is the

asymptotically e¢ cient linear estimator for grouped data. Therefore we can conclude that there is no better

(i.e., asymptotically more e¢ cient) linear combination of Wald estimators than GLS (again, a maintained

assumption here is that � is constant). The formula for constructing the GLS estimator from a full set of

linearly independent Wald estimators appears in Angrist (1988).

Second, just as each Wald estimator is also an IV estimator, the GLS (weighted least squares) estimator

of equation (4.1.16) is also 2SLS. The instruments in this case are a full set of dummies to indicate each

lottery-number cell. To see why, de�ne the set of dummy instruments Zi � frji = 1[ri = j]; j = 1; :::J � 1g.

Now, consider the �rst stage regression of di on Zi plus a constant. Since this �rst stage is saturated, the

�tted values will be the sample conditional means, p̂j , repeated nj times for each j. The second stage slope

estimate is therefore exactly the same as weighted least squares estimation of the grouped equation, (4.1.16),

weighted by the cell size, nj .

The connection between grouped-data and 2SLS is of both conceptual and practical importance. On

the conceptual side, any 2SLS estimator using a set of dummy instruments can be understood as a linear

combination of all the Wald estimators generated by these instruments one at a time. The Wald estimator

in turn provides a simple framework used later in this chapter to interpret IV estimates in the much more

realistic world of heterogeneous potential outcomes.

Although not all instruments are inherently discrete and therefore immediately amenable to a Wald or

grouped-data interpretation, many are. Examples include the draft lottery number, quarter of birth, twins,

and sibling-sex composition instruments we�ve already discussed. See also the recent studies by Bennedsen,

et al., 2007, and Ananat and Michaels, 2008, both of which use dummies for male �rst births as instruments.

Moreover, instruments that have a continuous �avor can often be fruitfully turned into discrete variables. For

example, Angrist, Graddy and Imbens (2000) group continuous weather-based instruments into 3 dummy

variables, stormy, mixed, and clear, which they then use to estimate the demand �sh. This dummy-variable

parameterization seems to capture the main features of the relationship between weather conditions and the

price of �sh.10

On the practical side, the grouped-data equivalent of 2SLS gives us a simple tool that can be used to

explain and evaluate any IV strategy. In the case of the draft lottery, for example, the grouped model

embodies the assumption that the only reason average earnings vary with lottery numbers is the variation in

probability of service across lottery-number groups. If the underlying causal relation is linear with constant

e¤ects, then equation (4.1.16) should �t the group means well, something we can assess by inspection and,

as discussed in the next section, with the machinery of formal statistical inference.

10Continuous instruments recoded as dummies can be seen as providing a parsimonious non-parametric model for the under-

lying �rst-stage relation, E[dijzi]: In homoskedastic models with constant coe¢ cients, the asymptotically e¢ cient instrument

is E[dijzi] (Newey, 1990).
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Sometimes labor economists refer to grouped-data plots for discrete instruments as Visual Instrumental

Variables (VIV).11 An example appears in Angrist (1990), reproduced here as Figure 4.1.2. This �gure shows

the relationship between average earnings in 5-number RSN cells and the probability of service in these cells,

for the 1981-84 earnings of white men born 1950-53. The slope of the line through these points is an IV

estimate of the earnings loss due to military service, in this case about $2,400, not very di¤erent from the

Wald estimates discussed earlier but with a lower standard error (in this case, about $800).
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Figure 4.1.2: The relationship between average earnings and the probability of military service (from Angrist

1990). This is a VIV plot of average 1981-84 earnings by cohort and groups of �ve consecutive draft lottery

numbers against conditional probabilities of veteran status in the same cells. The sample includes white

men born 1950-53. Plotted points consist of average residuals (over four years of earnings) from regressions

on period and cohort e¤ects. The slope of the least-squares regression line drawn through the points is

-2,384, with a standard error of 778.

4.2 Asymptotic 2SLS Inference

4.2.1 The Limiting Distribution of the 2SLS Coe¢ cient Vector

We can derive the limiting distribution of the 2SLS coe¢ cient vector using an argument similar to that used

in Section 3.1.3 for OLS. In this case, let Vi �
�
X0i ŝi

�0
denote the vector of regressors in the 2SLS second

11See, e.g., the preface to Borjas (2005).
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stage, equation (4.1.9). The 2SLS estimator can then be written

�̂2SLS �
"X

i

ViV
0
i

#�1X
i

Viyi;

where � �
�
�0 �

�0
is the corresponding coe¢ cient vector. Note that

�̂2SLS = � +

"X
i

ViV
0
i

#�1X
i

Vi[�i + �(si � ŝi)]

= � +

"X
i

ViV
0
i

#�1X
i

Vi�i (4.2.1)

where the second equality comes from the fact that the �rst-stage residuals, (si � ŝi), are orthogonal to Vi

in the sample. The limiting distribution of the 2SLS coe¢ cient vector is therefore the limiting distribution

of [
P
i ViV

0
i ]
�1P

i Vi�i. This quantity is a little harder to work with than the corresponding OLS quantity,

because the regressors in this case involve estimated �tted values, ŝi. A Slutsky-type argument shows,

however, that we get the same limiting distribution replacing estimated �tted values with the corresponding

population �tted values (i.e., replacing ŝi with [X0i�10 + �11zi]). It therefore follows that �̂2SLS has an

asymptotically normal distribution, with probability limit �, and a covariance matrix estimated consistently

by [
P
i ViV

0
i ]
�1 �P

i ViV
0
i �
2
i

�
[
P
i ViV

0
i ]
�1. This is a sandwich formula like the one for OLS standard errors

(White, 1982). As with OLS, if �i is conditionally homoskedastic given covariates and instruments, the

consistent covariance matrix estimator simpli�es to [
P
i ViV

0
i ]
�1
�2�.

There is little new here, but there is one tricky point. It seems natural to construct 2SLS estimates

manually by �rst estimating the �rst stage (4.1.4a) and then plugging the �tted values into equation (4.1.9)

and estimating this by OLS. That�s �ne as far as the coe¢ cient estimates go, but the resulting standard errors

will be incorrect. Conventional regression software does not know that you are trying to construct a 2SLS

estimate. The residual variance estimator that goes into the standard formulas will therefore be incorrect.

When constructing standard errors, the software will estimate the residual variance of the equation you

estimate by OLS in the second stage:

yi � [�0Xi + �ŝi] = [�i + �(si � ŝi)];

replacing the coe¢ cients with the corresponding estimates. The correct residual variance estimator, however,

uses the original endogenous regressor to construct residuals and not the �rst-stage �tted values, ŝi. In

other words, the residual you want is yi � [�0Xi + �si] = �i, so as to consistently estimate �
2
�, and not

�i + �(si � ŝi). Although this problem is easy to �x (you can construct the appropriate residual variance

estimator in a separate calculation), software designed for 2SLS gets this right automatically, and may help
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you avoid other common 2SLS mistakes.

4.2.2 Over-identi�cation and the 2SLS MinimandF

Constant-e¤ects models with more instruments than endogenous regressors are said to be over-identi�ed.

Because there are more instruments than needed to identify the parameters of interest, these models impose

a set of restrictions that can be evaluated as part of a process of speci�cation testing. This process amounts

to asking whether the line plotted in a VIV-type picture �ts the relevant conditional means tightly enough

given the precision with which the means are estimated. The details behind this useful idea are easiest to

spell out using matrix notation and a traditional linear model.

Let Zi �
�
X0i z1i ::: zqi

�0
denote the vector formed by concatenating the exogenous covariates and

q instrumental variables and letWi �
�
X0i si

�0
denote the vector formed by concatenating the covariates

and the single endogenous variable of interest. In the quarter-of-birth paper, for example, the covariates are

year-of-birth and state-of-birth dummies, the instruments are quarter-of-birth dummies, and the endogenous

variable is schooling. The coe¢ cient vector is still � � [�0; �]0, as in the previous subsection. The residuals

for the causal model can be de�ned as a function of � using

�i(�) � yi � �0Wi = yi � [�0Xi + �si] :

This residual is assumed to be uncorrelated with the instrument vector, zi. In other words, �i satis�es the

orthogonality condition,

E[zi�i(�)] = 0: (4.2.2)

In any sample, however, this equation will not hold exactly because there are more moment conditions than

there are elements of �:12 The sample analog of (4.2.2) is the sum over i,

1

N

X
Zi�i(�) � mN (�): (4.2.3)

2SLS can be understood as a generalized method of moments (GMM) estimator that chooses a value for �

by making the sample analog of (4.2.2) as close to zero as possible.

By the central limit theorem, the sample moment vector
p
NmN (�) has an asymptotic covariance matrix

equal to E[ZiZ 0i�i(�)
2], a matrix we�ll call �. Although somewhat intimidating at �rst blush, this is just a

matrix of 4th moments, as in the sandwich formula used to construct robust standard errors, (3.1.7). As

shown by Hansen (1982), the optimal GMM estimator based on (4.2.2) minimizes a quadratic form in the

sample moment vector, mN (ĝ), where ĝ is a candidate estimator of �.13 The optimal weighting matrix in
12With a single endogenous variable and more than one instrument, � is [k+1]� 1, while Zi is [k+q]� 1 for q> 1. Hence the

resulting linear system cannot be solved unless there is a linear dependency that makes some of the instruments redundant.
13"Quadratic form" is matrix language for a weighted sum of squares. Suppose v is an N � 1 vector and M is an N � N



106 CHAPTER 4. INSTRUMENTAL VARIABLES IN ACTION

the middle of the GMM quadratic form is ��1. In practice, of course, �, is unknown and must be estimated.

A feasible version of the GMM procedure uses a consistent estimator of � in the weighting matrix. Since

the estimator using known and estimated � have the same limiting distribution, we�ll ignore this distinction

for now. The quadratic form to be minimized can therefore be written,

JN (ĝ) � NmN (ĝ)
0��1mN (ĝ); (4.2.4)

where the N -term out front comes from
p
N normalization of the sample moments. As shown immediately

below, when the residuals are conditionally homoskedastic, the minimizer of JN (ĝ) is the 2SLS estimator.

Without homoskedasticity, the GMM estimator that minimizes (4.2.4) is White�s (1982) Two-Stage IV (a

generalization of 2SLS) so that it makes sense to call JN (ĝ) the �2SLS minimand�.

Here are some of the details behind the GMM interpretation of 2SLS14 . Conditional homoskedasticity

means that

E[ZiZ
0
i�i(�)

2] = E[ZiZ
0
i]�

2
�:

Substituting for ��1 and using Z;y and W to denote sample data vectors and matrices, the quadratic form

to be minimized becomes

JN (ĝ) = (N�
2
�)
�1 � (y �Wĝ)0ZE[ZiZ

0
i]
�1Z 0(y �Wĝ): (4.2.5)

Finally, substituting the sample cross-product matrix
h
Z0Z
N

i
for E[ZiZ 0i], we have

ĴN (ĝ) = (1=�
2
�)� (y �Wĝ)0PZ(y �Wĝ);

where PZ = Z(Z 0Z)�1Z. From here, we get the solution

ĝ = �̂2SLS = [W
0PZW ]

�1W 0PZy:

Since the projection operator, PZ , produces �tted values, and PZ is an idempotent matrix, this can be seen to

be the OLS estimator of the second-stage equation, (4.1.9), written in matrix notation. More generally, even

without homoskedasticity we can obtain a feasible e¢ cient 2SLS-type estimator by minimizing (4.2.4) and

using a consistent estimator of E[ZiZ 0i�i(ĝ)
2] to form ĴN (ĝ). Typically, we�d use the empirical fourth mo-

ments,
P
ZiZ

0
i�̂
2
i , where �̂i is the regular 2SLS residual computed without worrying about heteroskedasticity

(see, White, 1982, for distribution theory and other details).

matrix. A quadratic form in v is v0Mv. If M is a N �N diagonal matrix with diagonal elements mi, then v0Mv =
P
i
miv

2
i :

14Much more detailed explanations can be found in Newey (1985), Newey and West (1987), and the original Hansen (1982)

GMM paper.
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The over-identi�cation test statistic is given by the minimized 2SLS minimand. Intuitively, this statistic

tells us whether the sample moment vector, mN (ĝ), is close enough to zero for the assumption that E[Zi�i] =

0 to be plausible. In particular, under the null hypothesis that the residuals and instruments are indeed

orthogonal, the minimized JN (ĝ) has a �2 (q� 1) distribution. We can therefore compare the empirical

value of the 2SLS minimand with chi-square tables in a formal testing procedure for H0 : E[Zi�i] = 0.

For reasons that will soon become apparent, we�re not often interested in over-identi�cation per se.

Our main interest is in the 2SLS minimand when the instruments are a full set of mutually exclusive

dummy variables, as for the Wald estimators and grouped-data estimation strategies discussed above. In

this important special case, the 2SLS becomes weighted least squares of a grouped equation like (4.1.16),

while the 2SLS minimand is the relevant weighted sum of squares being minimized. To see this, note that

projection on a full set of mutually exclusive dummy variables for an instrument that takes on j values

produces an N � 1 vector of �tted values equal to the j conditional means at each value of the instrument

(included covariates are counted as instruments), each one of these nj times, where nj is the group size

and
P
nj = N . The cross product matrix [Z 0Z] in this case is a j�j diagonal matrix with elements nj .

Simplifying, we then have

ĴN (ĝ) = (1=�
2
�)�

X
j

nj(�yj � ĝ0 �Wj)
2; (4.2.6)

where �Wj is the sample mean of the rows of matrix W in group j. Thus, ĴN (ĝ) is the GLS weighted least

squares minimand for estimation of the grouped regression: �yj on �Wj . With a little bit more work (here we

skip the details), we can similarly show that the e¢ cient Two-Step IV procedure without homoskedasticity

minimizes

ĴN (ĝ) =
X
j

 
nj
�2j

!
(�yj � ĝ0 �Wj)

2; (4.2.7)

where �2j is the variance of �i in group j. Estimation using (4.2.7) is feasible because we can estimate �
2
j in

a �rst-step, say, using ine¢ cient-but-still-consistent 2SLS that ignores heteroskedasticity. E¢ cient two-step

IV estimators are constructed in Angrist (1990, 1991).

The GLS structure of the 2SLS minimand allows us to see the over-identi�cation test statistic for dummy

instruments as a simple measure of the goodness of �t of the line connecting �yj and �Wj . In other words, this

is the chi-square goodness of �t statistic for the line in a VIV plot like �gure 4.1.2. The chi-square degrees

of freedom parameter is given by the di¤erence between the number of values taken on by the instrument

and the number of parameters being estimated15 .

Like the various paths leading to the 2SLS estimator, there are many roads to the test-statistic, (4.2.7),

as well. Here are two further paths that are worth knowing. First, the test-statistic based on the general

GMM minimand for IV, whether the instruments are group dummies or not, is the same as the over-

15 If, for example, the instrument takes on three values, one of which is assigned to the constant, and the model includes a

constant and a single the endogenous variable only, the test statistic has 1 degree of freedom.
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identi�cation test statistic discussed in many widely-used econometric references on simultaneous equations

models. For example, this statistic features in Hausman�s (1983) chapter on simultaneous equations in

the Handbook of Econometrics, which also proposes a simple computational procedure: for homoskedastic

models, the minimized 2SLS minimand is the sample size times the R2 from a regression of the 2SLS

residuals on the instruments (and the included exogenous covariates). The formula for this is N
h
�̂0PZ �̂
�̂0�̂

i
,

where �̂ =y�W �̂2SLS is the vector of 2SLS residuals.

Second, it�s worth emphasizing that the essence of over-identi�cation can be said to be �more than one

way to skin the same econometric cat.�In other words, given more than one instrument for the same causal

relation, we might consider constructing simple IV estimators one at a time and comparing them. This

comparison checks over-identi�cation directly: If each just-identi�ed estimator is consistent, the distance

between them should be small relative to sampling variance, and should shrink as the sample size and hence

the precision of these estimates increases. In fact, we might consider formally testing whether all possible

just-identi�ed estimators are the same. The resulting test statistic is said to generate a Wald16 test of this

null, while the test-statistic based on the 2SLS minimand is said to be a Lagrange Multiplier (LM) test

because it can be related to the score vector in a maximum likelihood version of the IV setup.

In the grouped-data version of IV, the Wald test amounts to a test of equality for the set of all possible

linearly independent Wald estimators. If, for example, lottery numbers are divided into 4 groups based on

various cohorts eligibility cuto¤s (RSN 1-95, 96-125, 126-195, and the rest), then 3 linearly independent

Wald estimators can be constructed. Alternatively, the e¢ cient grouped-data estimator can be constructed

by running GLS on these four conditional means. Four groups means there are 3 possible Wald estimators

and 2 non-redundant equality restrictions on these three; hence, the relevant Wald statistic has 2 degrees of

freedom. On the other hand, 4 groups means three instruments and a constant available to estimate a model

with 2 parameters (the constant and the causal e¤ect of military service). So the 2SLS minimand generates

an over-identi�cation test statistic with 4 � 2 = 2 degrees of freedom. And, in fact, provided you use the

same method of estimating the weighting matrix in the relevant quadratic forms, these two test statistics

not only test the same thing, they are numerically equivalent. This makes sense since we have already seen

that 2SLS is the e¢ cient linear combination of Wald estimators.17

Finally, a caveat regarding over-identi�cation tests in practice: In our experience, the �over-ID statistic�

is often of little value in applied work. Because JN (ĝ) measures variance-normalized goodness of-�t, the

over-ID test-statistic tends to be low when the underlying estimates are imprecise. Since IV estimates are

very often imprecise, we cannot take much satisfaction from the fact that one estimate is within sampling

variance of another even if the individual estimates appear precise enough to be informative. On the other

16The Wald estimator and Wald test are named after the same statistician, Abraham Wald, but the latter reference is Wald

(1943).
17The fact that Wald and LM testing procedures for the same null are equivalent in linear models was established by Newey

and West (1987). Angrist (1991) gives a formal statement of the argument in this paragraph.
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hand, in cases where the underlying IV estimates are quite precise, the fact that the over-ID statistic rejects

need not point to an identi�cation failure. Rather, this may be evidence of treatment e¤ect heterogeneity, a

possibility we discuss further below. On the conceptual side, however, an understanding of the anatomy of

the 2SLS minimand is invaluable, for it once again highlights the important link between grouped data and

IV. This link takes the mystery out of estimation and testing with instrumental variables and forces us to

confront the raw moments that are the foundation for causal inference.

4.3 Two-Sample IV and Split-Sample IVF

The GMM interpretation of 2SLS highlights the fact that the IV estimator can be constructed from sample

moments alone, with no micro data. Returning to the sample moment condition, (4.2.3), and re-arranging

slightly produces a regression-like equation involving second moments:

Z 0y
N

=
Z 0W

N
� +

Z 0�

N
(4.3.1)

GLS estimates of � in (4.3.1) are consistent because E
h
Z0y
N

i
= E

h
Z0W
N

i
�.

The 2SLS minimand can be thought of as GLS applied to equation (4.3.1), after multiplying by
p
N to

keep the residual from disappearing as the sample size gets large. In other words, 2SLS minimizes a quadratic

form in the residuals from (4.3.1) with a (possibly non-diagonal) weighting matrix.18 An important insight

that comes from writing the 2SLS problem in this way is that we do not need the individual observations

in our sample to estimate (4.3.1). Just as with the OLS coe¢ cient vector, which can be constructed from

the sample conditional mean function, IV estimators can also be constructed from sample moments. The

moments needed for IV are Z0y
N and Z0W

N . The dependent variable, Z
0y
N , is a vector of dimension [k+q]� 1.

The regressor matrix, Z
0W
N , is of dimension [k+q]� [k+1]. The second-moment equation cannot be solved

exactly unless q= 1 so it makes sense to make the �t as good as possible by minimizing a quadratic form in

the residuals. The most e¢ cient weighting matrix for this purpose is the asymptotic covariance matrix of

Z0�p
N
. This again produces the 2SLS minimand, ĴN (ĝ).

A related insight is the fact that the moment matrices on the left and right hand side of the equals sign

in equation (4.3.1) need not come from the same data sets provided these data sets are drawn from the

same population. This observation leads to the two-sample instrumental variables (TSIV) estimator used

by Angrist (1990) and developed formally in Angrist and Krueger (1992)19 . Brie�y, let Z1 and y1 denote

18A quadratic form is the matrix-weighted product, x0Ax, where x is a random vector of, say, dimension k and A is a k�k

matrix of constants.
19Applications of TSIV include Bjorklund and Jantti (1997), Jappelli, Pischke, and Souleles (1998), Currie and Yelowitz

(2000), and Dee and Evans (2003). In a recent paper, Inoue and Solon (2005) compare the asymptotic distributions of

alternative TSIV estimators, and introduce a maximum likelihood (LIML-type) version of TSIV. They also correct a mistake

in the distribution theory in Angrist and Krueger (1995), discussed further, below.
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the instrument/covariate matrix and dependent variable vector in data set 1 of size N1 and let Z2 and W2

denote the instrument /covariate matrix and endogenous variable/covariate matrix in data set 2 of size N2.

Assuming plim
�
Z02W2

N2

�
= plim

�
Z01W1

N1

�
, GLS estimates of the two-sample moment equation

Z 01y1
N1

=
Z 02W2

N2
� +

��
Z 01W1

N1
� Z 02W2

N2

�
� +

Z 01�1
N1

�

are also consistent for �. The limiting distribution of this estimator is obtained by normalizing by
p
N1 and

assuming plim
�
N2

N1

�
is a constant.

The utility of TSIV comes from the fact that it widens the scope for IV estimation to situations where

observations on dependent variables, instruments, and the endogenous variable of interest are hard to �nd

in a single sample. It may be easier to �nd one data set that has information on outcomes and instruments,

with which the reduced form can be estimated, and another data set which has information on endogenous

variables and instruments, with which the �rst stage can be estimated. For example, in Angrist (1990),

administrative records from the Social Security Administration (SSA) provide information on the dependent

variable (annual earnings) and the instruments (draft lottery numbers coded from dates of birth, as well as

covariates for race and year of birth). The SSA, however, does not track participants�veteran status. This

information was taken from military records, which also contain dates of birth that can used to code lottery

numbers. Angrist (1990) used these military records to construct Z02W2

N2
, the �rst-stage correlation between

lottery numbers and veteran status conditional on race and year of birth, while the SSA data were used to

construct Z
0
1y1
N1

.

Two further simpli�cations make TSIV especially easy to use. First, as noted previously, when the

instruments consist of a full set of mutually exclusive dummy variables, as in Angrist (1990) and Angrist

and Krueger (1992), the second moment equation, (4.3.1), simpli�es to a model for conditional means. In

particular, the 2SLS minimand for the two-sample problem becomes

ĴN (ĝ) =
X
j

!j
�
�y1j � ĝ0 �W2j

�2
; (4.3.2)

where �y1j is the mean of the dependent variable at instrument/covariate value j in one sample, �W2j is the

mean of endogenous variables and covariates at instrument/covariate value j in a second sample, and !j is

an appropriate weight. This amounts to weighted least squares estimation of the VIV equation, except that

the dependent and independent variables do not come from the same sample. Again, Angrist (1990) and

Angrist and Krueger (1992) provide illustrations. The optimal weights for asymptotically e¢ cient TSIV are

given by variance of �y1j � ĝ0 �W2j . This variance is a¤ected by the fact that moments come from di¤erent

samples, as are the TSIV standard errors, which are easy to compute in the dummy-instrument case since

the estimator is equivalent to weighted least squares.
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Second, Angrist and Krueger (1995) introduced a computationally attractive TSIV-type estimator that

requires no matrix manipulation and can be implemented with ordinary regression software. This estimator,

called Split-Sample IV (SSIV), works as follows.20 The �rst-stage estimates in data set two are given by

(Z 02Z2)
�1Z 02W2. These �tted values can be carried over to data set 1 by constructing the cross-sample

�tted value, Ŵ12 � Z1(Z
0
2Z2)

�1Z 02W2. The SSIV second stage is a regression of y1 on Ŵ12. The correct

limiting distribution for this estimator is derived in Inoue and Solon (2005), who show that the limiting

distribution presented in Angrist and Krueger (1992) requires the assumption that Z 01Z1 = Z 02Z2 (as would

be true if the marginal distribution of the instruments and covariates is �xed in repeated samples). It�s

worth noting, however, that the limiting distributions of SSIV and 2SLS are the same when the coe¢ cient

on the endogenous variable is zero. The standard errors for this special case are simple to construct and

probably provide a reasonably good approximation to the general case.21

4.4 IV with Heterogeneous Potential Outcomes

The discussion of IV up to this point postulates a constant causal e¤ect. In the case of a dummy variable

like veteran status, this means y1i�y0i = � for all i, while with a multi-valued treatment like schooling,

this means Ysi � Ys�1;i = � for all s and all i. Both are highly stylized views of the world, especially the

multi-valued case which imposes linearity as well as homogeneity. To focus on one thing at a time in a

heterogeneous-e¤ects model, we start with a zero-one causal variable. In this context, we�d like to allow for

treatment-e¤ect heterogeneity, in other words, a distribution of causal e¤ects across individuals.

Why is treatment-e¤ect heterogeneity important? The answer lies in the distinction between the two

types of validity that characterize a research design. Internal validity is the question of whether a given design

successfully uncovers causal e¤ects for the population being studied. A randomized clinical trial or, for that

matter, a good IV study, has a strong claim to internal validity. External validity is the predictive value

of the study�s �ndings in a di¤erent context. For example, if the study population in a randomized trial is

especially likely to bene�t from treatment, the resulting estimates may have little external validity. Likewise,

20Angrist and Krueger called this estimator SSIV because they were concerned with a scenario where a single data set is

deliberately split in two. As discussed in Section (4.6.4), the resulting estimator may have less bias than conventional 2SLS.

Inoue and Solon (2005) refer to the estimator Angrist and Krueger (1995) called SSIV as Two-sample 2SLS or TS2SLS.
21This shortcut formula uses the standard errors from the manual SSIV second stage. The correct asymptotic covariance

matrix formula, from Inoue and Solon (2005), is

fB[(�11 + ��0�22�)A]
�1Bg�1

where B=plim
�
Z02W2

N2

�
= plim

�
Z01W1

N1

�
; A = plim

�
Z01Z1
N1

�
= plim

�
Z2Z2
N2

�
, plim

�
N2
N1

�
= �; �11 is the variance of the

reduced-form residual in data set 1, and �22 is the variance of the �rst-stage residual in data set 2. In principle, these pieces

are easy enough to calculate. Other approaches to SSIV inference include those of Dee and Evans (2003), who calculate

standard errors for just-identi�ed models using the delta-method, and Bjorklund and Jantti (1997), who use a bootstrap.
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draft-lottery estimates of the e¤ects of conscription for service in the Vietnam era need not be a good measure

of the consequences of voluntary military service. An econometric framework with heterogeneous treatment

e¤ects helps us to assess both the internal and external validity of IV estimates.22

4.4.1 Local Average Treatment E¤ects

In an IV framework, the engine that drives causal inference is the instrument, zi, but the variable of interest

is still di. This feature of the IV setup leads us to adopt a generalized potential-outcomes concept, indexed

against both instruments and treatment status. Let yi(d; z) denote the potential outcome of individual i

were this person to have treatment status di = d and instrument value zi = z. This tells us, for example,

what the earnings of i would be given alternative combinations of veteran status and draft-eligibility status.

The causal e¤ect of veteran status given i�s realized draft-eligibility status is yi(1;zi)�yi(0;zi), while the

causal e¤ect of draft-eligibility status given i�s veteran status is yi(di; 1)�yi(di; 0).

We can think of instrumental variables as initiating a causal chain where the instrument, zi, a¤ects the

variable of interest, di, which in turn a¤ects outcomes, yi. To make this precise, we need notation to express

the idea that the instrument has a causal e¤ect on di. Let d1i be i�s treatment status when zi = 1, while

d0i is i�s treatment status when zi = 0: Observed treatment status is therefore

di = d0i + (d1i � d0i)zi = �0 + �1izi + �i: (4.4.1)

In random-coe¢ cients notation, �0 � E[d0i] and �1i � (d1i�d0i), so �1i is the heterogeneous causal e¤ect

of the instrument on di. As with potential outcomes, only one of the potential treatment assignments, d1i

and d0i, is ever observed for any one person. In the draft lottery example, d0i tells us whether i would serve

in the military if he draws a high (draft-ineligible) lottery number, while d1i tells us whether i would serve if

he draws a low (draft-eligible) lottery number. We get to see one or the other of these potential assignments

depending on zi. The average causal e¤ect of zi on di is E[�1i].

The �rst assumption in the heterogeneous framework is that the instrument is as good as randomly as-

signed: it is independent of the vector of potential outcomes and potential treatment assignments. Formally,

this can be written

[fyi(d; z);8 d; zg;d1i;d0i]q zi; (4.4.2)

Independence is su¢ cient for a causal interpretation of the reduced form, i.e., the regression of yi on zi.

22The distinction between internal and external validity is relatively new to applied econometrics but has a long history in

social science. See, for example, the chapter-length discussion in Shadish, Cook, and Campbell (2002), the successor to a

classic text on research methods by Campbell and Stanley (1963).
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Speci�cally,

E [yijzi = 1]� E [yijzi = 0] = E [yi(d1i; 1)jzi = 1]� E [yi(d0i; 0)jzi = 0]

= E [yi(d1i; 1)� yi(d0i; 0)] ;

the causal e¤ect of the instrument on yi. Independence also means that

E [dijzi = 1]� E [dijzi = 0] = E [d1ijzi = 1]� E [d0ijzi = 0]

= E [d1i � d0i] ;

in other words, the �rst-stage from our earlier discussion of 2SLS captures the causal e¤ect of zi on di:

The second key assumption in the heterogeneous-outcomes framework is the presumption that yi(d; z)

is only a function of d.23 To be speci�c, while draft-eligibility clearly a¤ects veteran status, an individual�s

potential earnings as a veteran are assumed to be unchanged by draft-eligibility status; while potential

earnings as a nonveteran are similarly una¤ected. In general, the claim that an instrument operates through

a single known causal channel is called an exclusion restriction. In a linear model with constant e¤ects, the

exclusion restriction is expressed by the omission of the instrument from the causal equation of interest, or,

equivalently, E[zi�i] = 0 in equation (4.1.14). It�s worth noting that the traditional error-term notation

used for simultaneous equations models doesn�t lend itself to a clear distinction between independence and

exclusion. We need zi and �i to be uncorrelated in this equation, but the reasoning that lies behind this

assumption is unclear until we consider both the independence and exclusion restrictions.

The exclusion restriction fails for draft-lottery instruments if men with low draft lottery numbers were

a¤ected in some way other than through an increased likelihood of service. For example, Angrist and

Krueger (1992) looked for an association between draft lottery numbers and schooling. Their idea was that

educational draft deferments would have led men with low lottery numbers to stay in college longer than

they would have otherwise desired. If so, draft lottery numbers are correlated with earnings for at least two

reasons: an increased likelihood of military service and an increased likelihood of college attendance. The

fact that the lottery number is randomly assigned (and therefore satis�es the independence assumption) does

not make this possibility less likely. The exclusion restriction is distinct from the claim that the instrument

is (as good as) randomly assigned. Rather, it is a claim about a unique channel for causal e¤ects of the

instrument.24

Using the exclusion restriction, we can de�ne potential outcomes indexed solely against treatment status

23Hirano, Imbens, Rubin and Zhou (2000) note that the exclusion restriction that yi(d; z) equals yi(d; z0) can be weakened

to require only that the distributions of yi(d; z) and yi(d; z0) be the same.
24As it turns out, there is not much of a relationship between schooling and lottery numbers in the Angrist and Krueger

(1992) data, probably because educational deferments were phased out during the lottery period.
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using the single-index (y1i;y0i) notation we have been using all along. In particular,

y1i � yi(1; 1) = yi(1; 0);

y0i � yi(0; 1) = yi(0; 0): (4.4.3)

The observed outcome, yi, can therefore be written in terms of potential outcomes as:

yi = yi(0; zi) + [yi(1; zi)� yi(0; zi)]di (4.4.4)

= y0i + (y1i � y0i)di:

A random-coe¢ cients notation for this is

yi = �0 + �idi + �i;

a compact version of (4.4.4) with �0 � E[y0i] and �i �y1i�y0i.

A �nal assumption needed for heterogeneous IV models is that either �1i � 0 for all i or �1i � 0 for all i.

This monotonicity assumption, introduced by Imbens and Angrist (1994), means that while the instrument

may have no e¤ect on some people, all of those who are a¤ected are a¤ected in the same way. In other words,

either d1i �d0i or d1i �d0i for all i. In what follows, we assume monotonicity holds with d1i �d0i. In the

draft-lottery example, this means that although draft-eligibility may have had no e¤ect on the probability

of military service for some men, there is no one who was actually kept out of the military by being draft-

eligible. Without monotonicity, instrumental variables estimators are not guaranteed to estimate a weighted

average of the underlying individual causal e¤ects, y1i�y0i.

Given the exclusion restriction, the independence of instruments and potential outcomes, the existence

of a �rst stage, and monotonicity, the Wald estimand can be interpreted as the e¤ect of veteran status on

those whose treatment status can be changed by the instrument. This parameter is called the local average

treatment e¤ect ((LATE); Imbens and Angrist, 1994). Here is a formal statement:

Theorem 4.4.1 THE LATE THEOREM. Suppose

(A1, Independence) fyi(d1i; 1);y0i(d0i; 0);d1i;d0igqzi;

(A2, Exclusion) yi(d; 0) =yi(d; 1) �ydi for d = 0; 1;

(A3, First-stage), E[d1i�d0i] 6= 0

(A4, Monotonicity) d1i�d0i � 08i, or vice versa;

Then
E[yijzi = 1]� E[yijzi = 0]
E[dijzi = 1]� E[dijzi = 0]

= E[y1i � y0ijd1i > d0i] = E[�ij�1i > 0]:

Proof. Use the exclusion restriction to write E[yijzi = 1] = E[y0i + (y1i�y0i)dijzi = 1], which equals
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E[y0i+ (y1i�y0i)d1i] by independence. Likewise E[yijzi = 0] = E[y0i+ (y1i�y0i)d0i], so the numerator of

the Wald estimator is E[(y1i�y0i)(d1i�d0i)]. Monotonicity means d1i�d0i equals one or zero, so

E[(y1i � y0i)(d1i � d0i)] = E[y1i � y0ijd1i > d0i]P [d1i > d0i]:

A similar argument shows

E[dijzi = 1]� E[dijzi = 0] = E[d1i � d0i] = P [d1i > d0i]:

This theorem says that an instrument which is as good as randomly assigned, a¤ects the outcome through

a single known channel, has a �rst-stage, and a¤ects the causal channel of interest only in one direction, can

be used to estimate the average causal e¤ect on the a¤ected group. Thus, IV estimates of e¤ects of military

service using the draft lottery estimate the e¤ect of military service on men who served because they were

draft-eligible, but would not otherwise have served. This obviously excludes volunteers and men who were

exempted from military service for medical reasons, but it includes men for whom draft policy was binding.

How useful is LATE? No theorem answers this question, but it�s always worth discussing. Part of the

interest in the e¤ects of Vietnam-era service revolves around the question of whether veterans (especially,

conscripts) were adequately compensated for their service. Internally valid draft lottery estimates answer

this question. Draft lottery estimates of the e¤ects of Vietnam-era conscription may also be relevant for

discussions of any future conscription policy. On the other hand, while draft lottery instruments produce

internally valid estimates of the causal e¤ect of Vietnam-era conscription, the external validity - i.e., the

predictive value of these estimates for military service in other times and places - is not directly addressed

by the IV framework. There is nothing in IV formulas to explain why Vietnam-era service a¤ects earnings;

for that, you need a theory.25

You might wonder why we need monotonicity for the LATE theorem, an assumption that plays no role

in the traditional simultaneous-equations framework with constant e¤ects. A failure of monotonicity means

the instrument pushes some people into treatment while pushing others out. Angrist, Imbens, and Rubin

(1996) call the latter group de�ers. De�ers complicate the link between LATE and the reduced form. To

see why, go back to the step in the proof of the LATE theorem which shows the reduced form is

E[yijzi = 1]� E[yijzi = 0] = E[(y1i � y0i)(d1i � d0i)]:

25Angrist (1990) interprets draft lottery estimates as the penalty for lost labor market experience. This suggests draft lottery

estimates should have external validity for the e¤ects of conscription in other periods, a conjecture born out by the results for

WWII draftees in Angrist and Krueger (1994).
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Without monotonicity, this is equal to

E[y1i � y0ijd1i > d0i]P [d1i > d0i]� E[y1i � y0ijd1i < d0i]P [d1i < d0i]:

We might therefore have a scenario where treatment e¤ects are positive for everyone yet the reduced form

is zero because e¤ects on compliers are canceled out by e¤ects on de�ers. This doesn�t come up in a

constant-e¤ects model because the reduced form is always the constant e¤ect times the �rst stage regardless

of whether the �rst stage includes de�ant behavior.26

A deeper understanding of LATE can be had by linking it to a workhorse of contemporary econometrics,

the latent-index model for "dummy endogenous variables" like assignment to treatment. These models

describe individual choices as determined by a comparison of partly observed and partly unknown (�latent�)

utilities and costs (see, e.g., Heckman, 1978). Typically, these unobservables are thought of as being related

to outcomes, in which case the treatment variable is said to be endogenous (though it is not really endogenous

in a simultanenous-equations sense). For example (ignoring covariates), we might model veteran status as

di =

8><>: 1 if 
0 + 
1zi > vi

0 otherwise
;

where vi is a random factor involving unobserved costs and bene�ts of military service assumed to be

independent of zi. This latent-index model characterizes potential treatment assignments as:

d0i = 1[
0 > vi] and d1i = 1[
0 + 
1 > vi]:

Note that in this model, monotonicity is automatically satis�ed since 
1 is a constant. Assuming 
1 > 0,

LATE can be written

E[y1i � y0ijd1i > d0i] = E[y1i � y0ij
0 + 
1 > vi > 
0];

which is a function of the latent �rst-stage parameters, 
0 and 
1, as well as the joint distribution of y1i�y0i

and vi. This is not, in general, the same as the population average treatment e¤ect, E[y1i�y0i], or the

26With a constant e¤ect, �;

E[y1i � y0ijd1i > d0i]P [d1i > d0i]

�E[y1i � y0ijd1i < d0i]P [d1i < d0i]:

= �fP [d1i > d0i]� P [d1i < d0i]g

= �fE[d1i � d0i]g:

So a zero reduced form e¤ect means either the �rst stage is zero or � = 0.
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e¤ect on the treated, E[y1i�y0ijdi = 1]. We explore the distinction between di¤erent average causal e¤ects

in Section 4.4.2.

4.4.2 The Compliant Subpopulation

The LATE framework partitions any population with an instrument into a set of three instrument-dependent

subgroups, de�ned by the manner in which members of the population react to the instrument:

De�nition 4.4.1 Compliers. The subpopulation with d1i = 1 and d0i = 0:

Always-takers. The subpopulation with d1i =d0i = 1:

Never-takers. The subpopulation with d1i =d0i = 0:

LATE is the e¤ect of treatment on the population of compliers. The term "compliers" comes from

an analogy with randomized trials where some experimental subjects comply with the randomly assigned

treatment protocol (e.g., take their medicine) but some do not, while some control subjects obtain access to

the experimental treatment even though they were not supposed to. Those who don�t take their medicine

when randomly assigned to do so are never-takers while those who take the medicine even when put into the

control group are always-takers. Without adding further assumptions (e.g., constant causal e¤ects), LATE

is not informative about e¤ects on never-takers and always-takers because, by de�nition, treatment status

for these two groups is unchanged by the instrument (random assignment). The analogy between IV and a

randomized trial with partial compliance is more than allegorical - IV solves the problem of causal inference

in a randomized trial with partial compliance. This important point merits a separate subsection, below.

Before turning to this important special case, we make a few general points. First, the average causal

e¤ect on compliers is not usually the same as the average treatment e¤ect on the treated. From the simple

fact that di =d0i+(d1i�d0i)zi, we learn that the treated population consists of two non-overlapping groups.

By monotonicity, we cannot have both d0i = 1 and d1i�d0i = 1 since d0i = 1 implies d1i = 1: The treated

therefore have either d0i = 1 or d1i�d0i = 1 and zi = 1, and hence di can be written as the sum of two

mutually-exclusive dummies, di0 and (d1i�d0i)zi. The treated consist of either always-takers or compliers

with the instrument switched on. Since the instrument is as good as randomly assigned, compliers with the

instrument switched on are representative of all compliers. From here we get

E [y1i � y0ijdi = 1]| {z }
e¤ect on the treated

(4.4.5)

= E[y1i � y0ijd0i = 1]P [d0i = 1jdi = 1]

+E [y1i � y0ijd1i > d0i; zi = 1]P [d1i > d0i; zi = 1jdi = 1]

= E[y1i � y0ijd0i = 1]| {z }
e¤ect on always-takers

P [d0i = 1jdi = 1]

+E [y1i � y0ijd1i > d0i]| {z }
e¤ect on compliers

P [d1i > d0i; zi = 1jdi = 1]
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Since P [d0i = 1jdi = 1] and P [d1i >d0i;zi = 1jdi = 1] add up to one, this means that the e¤ect of treatment

on the treated is a weighted average of e¤ects on always-takers and compliers.

Likewise, LATE is not the average causal e¤ect of treatment on the non-treated, E[y1i�y0ijdi = 0]. In

the draft-lottery example, the average e¤ect on the non-treated is the average causal e¤ect of military service

on the population of non-veterans from the Vietnam-era cohorts. The average e¤ect of treatment on the

non-treated is a weighted average of e¤ects on never-takers and compliers. In particular,

E [y1i � y0ijdi = 0]| {z }
e¤ect on the non-treated

(4.4.6)

= E [y1i � y0ijd1i = 0]| {z }
e¤ect on never-takers

P [d1i = 0jdi = 0]

+E [y1i � y0ijd1i > d0i]| {z }
e¤ect on compliers

P [d1i > d0i; zi = 0jdi = 0] ;

where we use the fact that, by monotonicity, those with d1i = 0 must be never-takers.

Finally, averaging (4.4.5) and (4.4.6) using

E[y1i � y0i] = E[y1i � y0ijdi = 1]P [di = 1] + E[y1i � y0ijdi = 0]P [di = 0]

shows the overall population average treatment e¤ect to be a weighted average of e¤ects on compliers, always-

takers, and never-takers. Of course, this is a conclusion we could have reached directly given monotonicity

and the de�nition at the beginning of this subsection.

Because an instrumental variable is not directly informative about e¤ects on always-takers and never-

takers, instruments do not usually capture the average causal e¤ect on all of the treated or on all of the

non-treated. There are important exceptions to this rule, however: instrumental variables that allow no

always-takers or no never-takers. Although this scenario is not typical, it is an important special case. One

example is the twins instrument for fertility, used by Rosenzweig and Wolpin (1980), Bronars and Grogger

(1994), Angrist and Evans (1998), and Angrist, Lavy, and Schlosser (2006). Another is Oreopoulos�(2006)

recent study using changes in compulsory attendance laws as instruments for schooling in Britain.

To see how this special case works with twins instruments, let ti be a dummy variable indicating multiple

second births. Angrist and Evans (1998) used this instrument to estimate the causal e¤ect of having three

children on earnings in the population of women with at least two children. The third child is especially

interesting because reduced fertility for American wives in the 1960s and 1970s meant a switch from three

children to two. Multiple second births provide quasi-experimental variation on this margin. Let y0i denote

potential earnings if a woman has only two children while y1i denotes her potential earnings if she has three,

an event indicated by di. Assuming that ti is randomly assigned, i.e., that fertility increases by at most one

child in response to a multiple birth, and that multiple births a¤ect outcomes only by increasing fertility,
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LATE using the twins instrument, ti, is also E[y1i�y0ijdi = 0], the average causal e¤ect on women who

are not treated (i.e., have two children only). This is because all women who have a multiple second birth

end up with three children, i.e., there are no never-takers in response to the twins instrument.

Oreopoulos (2006) also uses IV to estimate an average causal e¤ect of treatment on the non-treated. His

study estimates the economic returns to schooling using an increase in the British compulsory attendance

age from 14 to 15. Compliance with the Britain�s new compulsory attendance law was near perfect, though

many teens would previously have dropped out of school at age 14. The causal e¤ect of interest in this case

is the earnings premium for an additional year of high-school. Finishing this year can be thought of as the

treatment. Since everybody in Oreopoulos�British sample �nishes the additional year when compulsory

schooling laws are made stricter, Oreopoulos�IV strategy captures the average causal e¤ect of obtaining one

more year of high school on all those who leave school at 14. This turns on the fact that British teens are

remarkably law-abiding people - Oreopoulos�IV strategy wouldn�t estimate the e¤ect of treatment on the

non-treated in, say, Israel, where teenagers get more leeway when it comes to compulsory school attendance.

Israeli econometricians using changes in compulsory attendance laws as instruments must therefore make do

with LATE.

4.4.3 IV in Randomized Trials

The language of the LATE framework is based on an analogy between IV and randomized trials. But some

instruments really come from randomized trials. If the instrument is a randomly assigned o¤er of treatment,

then LATE is the e¤ect of treatment on those who comply with the o¤er but are not treated otherwise. An

especially important case is when the instrument is generated by a randomized trial with one-sided non-

compliance. In many randomized trials, participation is voluntary among those randomly assigned to receive

treatment. On the other hand, no one in the control group has access to the experimental intervention.

Since the group that receives (i.e., complies with) the assigned treatment is a self-selected subset of those

o¤ered treatment, a comparison between those actually treated and the control group is misleading. The

selection bias in this case is almost always positive: those who take their medicine in a randomized trial

tend to be healthier; those who take advantage of randomly assigned economic interventions like training

programs tend to earn more anyway.

IV using the randomly assigned treatment intended as an instrumental variable for treatment received

solves this sort of compliance problem. Moreover, LATE is the e¤ect of treatment on the treated in this case.

Suppose the instrument, zi, is a dummy variable indicating random assignment to a treatment group, while

di is a dummy indicating whether treatment was actually received. In practice, because of non-compliance,

di is not equal to zi. An example is the randomized evaluation of the JTPA training program, where only

60 percent of those assigned to be trained received training, while roughly 2 percent of those assigned to the

control group received training anyway (Bloom, et al., 1997). Non-compliance in the JTPA arose from lack
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of interest among participants and the failure of program operators to encourage participation. Since the

compliance problem in this case is largely con�ned to the treatment group, LATE using random assignment,

zi, as an instrument for treatment received, di, is the e¤ect of treatment on the treated.

This use of IV to solve the compliance problems is illustrated in Table 4.4.1, which presents results

from the JTPA experiment. The outcome variable of primary interest in the JTPA experiment is total

earnings in the 30-month period after random assignment. Columns 1-2 of the table show the di¤erence

in earnings between those who were trained and those who were not (the estimates in column 2 are from

a regression model that adjusts for a number of individual characteristics measured at the beginning of the

experiment. The contrast reported in columns 1-2 is on the order of $4,000 for men and $2,200 for women,

in both cases a large treatment e¤ect that amounts to about 20 percent of average earnings. But these

estimates are misleading because they compare individuals according to di, the actual treatment received.

Since individuals assigned to the treatment group were free to decline (and 40% did so), this comparison

throws away the random assignment unless the decision to accept treatment is itself independent of potential

outcomes. This seems unlikely.
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Columns 3 and 4 of Table 4.4.1. compare individuals according to whether they were o¤ered treatment.

In other words, this comparison is based on randomly assigned zi: In the language of clinical trials, the

contrast in columns 3-4 is known as the intention-to-treat (ITT) e¤ect . The intention-to-treat e¤ects in the

table are on the order $1,200 (somewhat less with covariates). Since zi was randomly assigned, the ITT

e¤ect have a causal interpretation: they tell us the causal e¤ect of the o¤er of treatment, building in the fact

that many of those o¤ered will decline. For this reason, the ITT e¤ect is too small relative to the average

causal e¤ect on those who were in fact treated. Columns 5 and 6 put the pieces together and give us the

most interesting e¤ect: intention-to-treat divided by the di¤erence in compliance rates between treatment

and control groups as originally assigned (about .6). These �gures, roughly $1,800, estimate the e¤ect of

treatment on the treated.

How do we know the that ITT-divided-by-compliance is the e¤ect of treatment on the treated? We can

recognize ITT as the reduced-form e¤ect of the randomly assigned o¤er of treatment, our instrument in this

case. The compliance rate is the �rst stage associated with this instrument, and the Wald estimand, as

always, is the reduced-form divided by the �rst-stage. In general this equals LATE, but because we have

(almost) no always-takers, the treated population consists (almost) entirely of compliers. The IV estimates

in column 5 and 6 of Table 4.4.1 are therefore consistent estimates of the e¤ect of treatment on the treated.

This conclusion is important enough that it warrants an alternative derivation. To the best of our

knowledge the �rst person to point out that the IV formula can be used to estimate the e¤ect of treatment

on the treated in a randomized trial with one-sided non-compliance was Howard Bloom (1984). Here is

Bloom�s result with a simple direct proof.

Theorem 4.4.2 THE BLOOM RESULT. Suppose the assumptions of the LATE theorem hold, and E[dijzi =

0] = 0: Then
E[yijzi = 1]� E[yijzi = 0]

E[dijzi = 1]
= E[y1i � y0ijdi = 1]:

Proof. E[yijzi = 1] = E[yi0 + (y1i�y0i)dijzi = 1], while E[yijzi = 0] = E[yi0jzi = 0] because E[dijzi =

0] = 0: Therefore

E[yijzi = 1]� E[yijzi = 0] = E[(y1i � y0i)dijzi = 1]

by independence. But

E[(y1i � y0i)dijzi = 1] = E[y1i � y0ijdi = 1; zi = 1]P [di = 1jzi = 1]

while E[dijzi = 0] = 0 means di = 1 implies zi = 1: Hence, E[y1i�y0ijdi = 1;zi = 1] = E[y1i�y0ijdi = 1]

In addition to telling us how to analyze randomized trials with non-compliance, the LATE framework
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opens the door to cleverly-designed randomized experiments in settings where it�s impossible or unethical to

compel treatment compliance. A famous example from the �eld of Criminology is the Minneapolis Domestic

Violence Experiment (MDVE). The MDVE was a pioneering e¤ort to determine the best police response

to domestic violence (Sherman and Berk, 1984). In general, police use a number of strategies when on a

domestic violence call. These include referral to counseling, separation orders, and arrest. A vigorous debate

swirls around the question of whether a hard-line response - arrest and at least temporary incarceration - is

productive, especially in view of the fact that domestic assault charges are frequently dropped.

As a result of this debate, the city of Minneapolis authorized a randomized trial where the police response

to a domestic disturbance was determined in part by random assignment. The research design used

randomly shu­ ed color-coded charge sheets telling the responding o¢ cers to arrest some perpetrators while

referring others to counseling or separating the parties. In practice, however, the police were free to overrule

the random assignment. For example, an especially dangerous or drunk o¤ender was arrested no matter

what. As a result, the actual response often deviated from the randomly assigned response, though the two

are highly correlated.

Most published analyses of the MDVE data recognize this compliance problem and focus on ITT e¤ects,

i.e., an analysis using the original random assignment and not the treatment actually delivered. But the

MDVE data can also be used to get the average causal e¤ect on compliers, in this case those who were

arrested because they were randomly assigned to be but would not have been arrested otherwise. The

MDVE is analyzed in this spirit in Angrist (2006). Because everyone in the MDVE who was assigned to

be arrested was in fact arrested, there are no never-takers. This is an interesting twist and the �ip-side of

the Bloom scenario: here, we have d1i = 1 for everybody. Consequently, LATE is the e¤ect of treatment

on the non-treated, i.e.,

E[y1i � y0ijd1i > d0i] = E[y1i � y0ijdi = 0];

where di indicates arrest. The IV estimates using MDVE data show that arrest reduces repeat o¤enses

sharply, in this case, among the subpopulation that was not arrested.27

4.4.4 Counting and Characterizing Compliers

We�ve seen that, except in special cases, each instrumental variable identi�es a unique causal parameter,

one speci�c to the subpopulation of compliers for that instrument. Di¤erent valid instruments for the

same causal relation therefore estimate di¤erent things, at least in principle (an important exception being

27Another application of IV to data from a randomized trial is Krueger (1999). This study uses randomly assigned class size

as an instrument for actual class size with data from the Tennessee STAR experiment. For students in �rst grade and higher,

actual class size di¤ers from randomly assigned class size in the STAR experiment because parents and teachers move students

around in years after the experiment began. Krueger 1999 also illustrates 2SLS applied to a model with variable treatment

intensity, as discussed in section 4.5.3.
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instruments that allow for perfect compliance on one side or the other). Although di¤erent IV estimates

are "weighted-up" by 2SLS to produce a single average causal e¤ect, over-identi�cation testing of the sort

discussed in Section 4.2.2, where multiple instruments are validated according to whether or not they estimate

the same thing, is out the window in a fully heterogeneous world.

Di¤erences in compliant sub-populations might explain variability in treatment e¤ects from one instru-

ment to another. We would therefore like to learn as much as we can about the compliers for di¤erent

instruments. Moreover, if the compliant subpopulation is similar to other populations of interest, the case

for extrapolating estimated causal e¤ects to these other populations is stronger. In this spirit, Acemoglu and

Angrist (2000) argue that quarter-of-birth instruments and state compulsory attendance laws (the minimum

schooling required before leaving school in your state of birth when you were 14) a¤ect essentially the same

group of people and for the same reasons. We therefore expect IV estimates of the returns to schooling from

these two sets of instruments to be similar. We might also expect the quarter of birth estimates to predict

the impact of contemporary proposals to strengthen compulsory attendance laws.

On the other hand, if the compliant subpopulations associated with two or more instruments are very

di¤erent, yet the IV estimates they generate are similar, we might be prepared to adopt homogeneous e¤ects

as a working hypothesis. This revives the over-identi�cation idea, but puts it at the service of external

validity.28 This reasoning is illustrated by the study of the e¤ects of family size on children�s education by

Angrist, Lavy, and Schlosser (2006). The Angrist, Lavy, and Schlosser study is motivated by the observation

that children from larger families typically end up with less education than those from smaller families. A

long-standing concern in research on fertility is whether the observed negative correlation between larger

families and worse outcomes is causal. As it turns out, IV estimates of the e¤ect of family size using

a number of di¤erent instruments, each with very di¤erent compliant subpopulations, all generate results

showing no e¤ect of family size. Angrist, Lavy, and Schlosser (2006) argue that their results point to a

common treatment of zero for just about everybody in the Israeli population they study.

We have already seen that the size of a complier group is easy to measure. This is just the Wald �rst-stage,

since, given monotonicity, we have

P [d1i>d0i] = E[d1i � d0i]

= E[d1i]� E[d0i]

= E[dijzi=1]� E[dijzi=0]:

We can also tell what proportion of the treated are compliers since, for compliers, treatment status is

28 In fact, maintaining the hypothesis that all instruments in an over-identi�ed model are valid, the traditional over-

identi�cation test statistic becomes a formal test for treatment-e¤ect heterogeneity.



4.4. IV WITH HETEROGENEOUS POTENTIAL OUTCOMES 125

completely determined by zi. Start with the de�nition of conditional probability:

P [d1i > d0ijdi=1] =
P [di=1jd1i>d0i]P [d1i>d0i]

P [di=1]
(4.4.7)

=
P [zi=1](E[dijzi=1]� E[dijzi=0])

P [di=1]
:

The second equality uses the fact that P [di=1jd1i >d0i] = P [zi=1jd1i >d0i] and that P [zi=1jd1i >d0i]

= P [zi=1] by Independence. In other words, the proportion of the treated who are compliers is given by

the �rst stage, times the probability the instrument is switched on, divided by the proportion treated.

Formula (4.4.7) is illustrated here by calculating the proportion of veterans who are draft-lottery com-

pliers. The ingredients are reported in Table 4.4.2. For example, for white men born in 1950, the �rst

stage is .159, the probability of draft-eligibility is 195
366 , and the marginal probability of treatment is .267.

From these statistics, we compute that the compliant subpopulation is .32 of the veteran population in this

group. The proportion of veterans who were draft-lottery compliers falls to 20 percent for non-white men

born in 1950. This is not surprising since the draft-lottery �rst stage is considerably weaker for non-whites.

The last column of the table reports the proportion of nonveterans who would have served if they had been

draft-eligible. This ranges from 3 percent of non-whites to 10 percent of whites, re�ecting the fact that most

non-veterans were deferred, ineligible, or unquali�ed for military service.
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The e¤ect of compulsory military service is the parameter of primary interest in the Angrist (1990) study,

so the fact that draft-eligibility compliers are a minority of veterans is not really a limitation of this study.

Even in the Vietnam era, most soldiers were volunteers, a little-appreciated fact about Vietnam-era veterans.

The LATE interpretation of IV estimates using the draft lottery highlights the fact that other identi�cation

strategies are needed to estimate e¤ects of military service on volunteers (some of these are implemented in

Angrist, 1998).

The remaining rows in Table 4.4.2 document the size of the compliant subpopulation for the twins and

sibling-sex composition instruments used by Angrist and Evans (1998) to estimate the e¤ects of childbearing

and for the quarter of birth instruments and compulsory attendance laws used by Angrist and Krueger

(1991) and Acemoglu and Angrist (2000) to estimates the returns to schooling. In each of these studies, the

compliant subpopulation is a small fraction of the treated group. For example, less than 2 percent of those

who graduated from high school did so because of compulsory attendance laws or by virtue of having been

born in a late quarter.

The question of whether a small compliant subpopulation is a cause for worry is context-speci�c. In

some cases, it seems fair to say, "you get what you need." With many policy interventions, for example, it is

a marginal group that is of primary interest, a point emphasized in McClellan�s (1994) landmark IV study of

the e¤ects of surgery on heart attack patients. McClellan uses the relative distance to cardiac care facilities

to construct instruments for whether an elderly heart-attack patient is treated with a surgical intervention.

Most patients get the same treatment either way, but for some, the case for major surgery is marginal. In

such cases, providers or patients opt for a less invasive strategy if the nearest surgical facility is far away.

McClellan �nds little bene�t from surgical procedures for this marginal group. Similarly, an increase in

the compulsory attendance age to age 18 is clearly irrelevant for the vast majority of American high school

students, but it will a¤ect a few who would otherwise drop out. IV estimates suggest the economic returns

to schooling for this marginal group are substantial.

The last column of Table 4.4.2 illustrates the special feature of twins instruments alluded to at the end

of the previous subsection. As before, let di = 0 for women with two children in a sample of women

with at least two children, while di = 1 indicates women who have more than two. Because there are no

never-takers in response to the event of a multiple birth, i.e., all mothers who have twins at second birth

end up with (at least) three children, the probability of compliance among those with di = 0 is virtually one

(the table shows an entry of .97). LATE is therefore the e¤ect on the non-treated, E[y1i�y0ijdi = 0], in

this case.

Unlike the size of the complier group, information on the characteristics of compliers seems like a tall

order because the compliers cannot be individually identi�ed. Because we can�t see both d1i and d0i for

each individual, we can�t just list those with d1i >d0i and then calculate the distribution of characteristics

for this group. Nevertheless, it�s easy to describe the distribution of complier characteristics. To simplify,
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we focus here on characteristics - like race or degree completion - that can be described by dummy variables.

In this case, everything we need to know can be learned from variation in the �rst stage across covariate

groups.

Let x1i be a Bernoulli-distributed characteristic, say a dummy indicating college graduates. Are sex-

composition compliers more or less likely to be college graduates than other women with two children? This

question is answered by the following calculation:

P [x1i = 1jd1i>d0i]
P [x1i = 1]

=
P [d1i>d0ijx1i = 1]

P [d1i>d0i]
=
E[dijzi = 1; x1i = 1]� E[dijzi = 0; x1i = 1]

E[dijzi = 1]� E[dijzi = 0]
: (4.4.8)

In other words, the relative likelihood a complier is a college graduate is given by the ratio of the �rst stage

for college graduates to the overall �rst stage.29

This calculation is illustrated in Table 4.4.3, which reports compliers� characteristics ratios for age at

�rst birth, nonwhite race, and degree completion using twins and same-sex instruments. The table was

constructed from the Angrist and Evans (1998) 1980 census extract. Twins compliers are much more likely

to be over 30 than the average mother in the sample, re�ecting the fact that younger women who had a

multiple birth were likely to go on to have additional children anyway. Twins compliers are also more

educated than the average mother, while sex-composition compliers are less educated. This helps to explain

the smaller 2SLS estimates generated by twins instruments (reported here in Table 4.1.4), since Angrist and

Evans (1998) show that the labor supply consequences of childbearing decline with mother�s schooling.

29A general method for constructing the mean or other features of the distribution of covariates for compliers uses Abadie�s

(2003) kappa-weighting scheme. For example,

E[Xijd1i > d0i] =
E[�iXi]

E[�i]
;

where

�i = 1�
di(1� zi)

1� P (zi = 1jXi)
� (1� di)zi
P (zi = 1Xi)

:

This works because the weighting function, �i, "�nds compliers," in a sense discussed in Section (4.5.2), below.
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