
Chapter 6

Getting a Little Jumpy: Regression

Discontinuity Designs

But when you start exercising those rules, all sorts of processes start to happen and you start

to �nd out all sorts of stu¤ about people . . . Its just a way of thinking about a problem, which

lets the shape of the problem begin to emerge. The more rules, the tinier the rules, the more

arbitrary they are, the better.

Douglas Adams, Mostly Harmless (1995)

Regression discontinuity (RD) research designs exploit precise knowledge of the rules determining treat-

ment. RD identi�cation is based on the idea that in a highly rule-based world, some rules are arbitrary and

therefore provide good experiments. RD comes in two styles, fuzzy and sharp. The sharp design can be

seen as a selection-on-observables story. The fuzzy design leads to an instrumental-variables-type setup.

6.1 Sharp RD

Sharp RD is used when treatment status is a deterministic and discontinuous function of a covariate, xi.

Suppose, for example, that

di =

8><>: 1 if xi � x0

0 if xi < x0

: (6.1.1)

where x0 is a known threshold or cuto¤. This assignment mechanism is a deterministic function of xi

because once we know xi we know di. It�s a discontinuous function because no matter how close xi gets to

x0, treatment is unchanged until xi = x0.

This may seem a little abstract, so here is an example. American high school students are awarded

National Merit Scholarship Awards on the basis of PSAT scores, a test taken by most college-bound high
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190 CHAPTER 6. REGRESSION DISCONTINUITY DESIGNS

school juniors, especially those who will later take the SAT. The question that motivated the �rst discussions

of RD is whether students who win these awards are more likely to �nish college (Thistlewaithe and Campbell,

1960; Campbell, 1969). Sharp RD compares the college completion rates of students with PSAT scores just

above and just below the National Merit Award thresholds. In general, we might expect students with higher

PSAT scores to be more likely to �nish college, but this e¤ect can be controlled by �tting a regression to the

relationship between college completion and PSAT scores, at least in the neighborhood of the award cuto¤.

In this example, jumps in the relationship between PSAT scores and college attendance in the neighborhood

of the award threshold are taken as evidence of a treatment e¤ect. It is this jump in regression lines that

gives RD its name.1

An interesting and important feature of RD, highlighted in a recent survey of RD by Imbens and Lemieux

(2008), is that there is no value of xi at which we get to observe both treatment and control observations.

Unlike full-covariate matching strategies, which are based on treatment-control comparisons conditional on

covariate values where there is some overlap, the validity of RD turns on our willingness to extrapolate across

covariate values, at least in a neighborhood of the discontinuity. This is one reason why sharp RD is usually

seen as distinct from other control strategies. For this same reason, we typically cannot a¤ord to be as

agnostic about regression functional form in the RD world as in the world of Chapter 3.

Figure 6.1.1 illustrates a hypothetical RD scenario where those with xi � 0:5 are treated. In Panel A,

the trend relationship between yi and xi is linear, while in Panel B, it�s nonlinear. In both cases, there is a

discontinuity in the relation between E[y0ijxi] and xi around the point x0:

A simple model formalizes the RD idea. Suppose that in addition to the assignment mechanism, (6.1.1),

potential outcomes can be described by a linear, constant-e¤ects model

E[y0ijxi] = �+ �xi

y1i = y0i + �

This leads to the regression,

yi = �+ �xi + �di + �i; (6.1.2)

where � is the causal e¤ect of interest. The key di¤erence between this regression and others we�ve used

to estimate treatment e¤ects (e.g., in Chapter 3) is that di, the regressor of interest, is not only correlated

with xi, it is a deterministic function of xi. RD captures causal e¤ects by distinguishing the nonlinear and

discontinuous function, 1(xi � x0), from the smooth and (in this case) linear function, xi:

1The basic structure of RD designs appears to have emerged simultaneously in a number of disciplines but has only recently

become important in applied econometrics. Cook (2008) gives an intellectual history. In a recent paper using Lalonde (1986)

style within-study comparisons, Cook and Wong (2008) �nd that RD generally does a good job of reproducing the results from

randomized trials.
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Figure 6.1.1: The sharp regression discontinuity design
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But what if the trend relation, E[y0ijxi], is nonlinear? To be precise, suppose that E[y0ijxi] = f(xi) for

some reasonably smooth function, f(xi). Panel B in Figure 6.1.1 suggests there is still hope even in this

more general case. Now we can construct RD estimates by �tting

yi = f(xi) + �di + �i; (6.1.3)

where again, di = 1(xi � x0) is discontinuous in xi at x0. As long as f(xi) is continuous in a neighborhood

of x0, it should be possible to estimate a model like (6.1.3), even with a �exible functional form for f(xi). For

example, modeling f(xi) with a pth-order polynomial, RD estimates can be constructed from the regression

yi = �+ �1xi + �2x
2
i + :::+ �px

p
i + �di + �i: (6.1.4)

A generalization of RD based on (6.1.4) allows di¤erent trend functions for E[y0ijxi] and E[y1ijxi]:

Modeling both of these CEFs with pth-order polynomials, we have

E[y0ijxi] = f0(xi) = �+ �01~xi + �02~x
2
i + :::+ �0p~x

p
i

E[y1ijxi] = f1(xi) = �+ �+ �11~xi + �12~xi
2 + :::+ �1p~xi

p;

where ~xi � xi � x0. Centering xi at x0 is just a normalization; it ensures that the treatment e¤ect at

xi = x0 is still the coe¢ cient on di in the regression model with interactions.

To derive a regression model that can be used to estimate the e¤ects interest in this case, we use the fact

that di is a deterministic function of xi to write

E[yijxi] = E[y0ijxi] + E[y1i � y0ijxi]di:

Substituting polynomials for conditional expectations, we then have

yi = �+ �01~xi + �02~x
2
i + :::+ �0p~x

p
i (6.1.6)

+�di + �
�
1di~xi + �

�
2di~xi

2 + :::+ ��pdi~xi
p + �i;

where ��1 = �11 � �01, ��2 = �12 � �02, and ��p = �1p � �0p and the error term, �i, is the CEF residual.

Equation (6.1.4) is a special case of (6.1.6) where ��1 = ��2 = ��p = 0: In the more general model, the

treatment e¤ect at xi � x0 = c > 0 is � + ��1c + ��2c
2 + ::: + ��pc

p, while the treatment e¤ect at x0 is �:

The model with interactions has the attraction that it imposes no restrictions on the underlying conditional

mean functions But in our experience, RD estimates of � based on the simpler model, (6.1.4), usually turn

out to be similar to those based on (6.1.6).
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The validity of RD estimates based on (6.1.4) or (6.1.6) turns on whether polynomial models provide an

adequate description of E[y0ijXi]: If not, then what looks like a jump due to treatment might simply be an

unaccounted-for nonlinearity in the counterfactual conditional mean function. This possibility is illustrated

in Panel C of Figure 6.1.1, which shows how a sharp turn in E[y0ijxi] might be mistaken for a jump from

one regression line to another. To reduce the likelihood of such mistakes, we can look only at data in a

neighborhood around the discontinuity, say the interval [x0 � �; x0 + �] for some small number �. Then we

have

E [yijx0 � � < xi < x0] ' E[y0ijxi = x0]

E [yijx0 < xi < x0 + �] ' E[y1ijxi = x0];

so that

lim
�!0

E [yijx0 < xi < x0 + �]� E [yijx0 � � < xi < x0] = E[y1i � y0ijxi = x0]: (6.1.7)

In other words, comparisons of average outcomes in a small enough neighborhood to the left and right of x0

should provide an estimate of the treatment e¤ect that does not depend on the correct speci�cation of a model

for E[y0ijxi]: Moreover, the validity of this nonparametric estimation strategy does not turn on the constant

e¤ects assumption, y1i�y0i = �; the estimand in (6.1.7) is the average causal e¤ect, E[y1i�y0ijxi = x0]:

The nonparametric approach to RD requires good estimates of the mean of yi in small neighborhoods

to the right and left of x0. Obtaining such estimates is tricky. The �rst problem is that working in a small

neighborhood of the cuto¤ means that you don�t have much data. Also, the sample average is biased for

the population average in the neighborhood of a boundary (in this case, x0). Solutions to these problems

include the use of a non-parametric version of regression called local linear regression (Hahn, Todd, and

van der Klaauw, 2001) and the partial-linear and local-polynomial estimators developed by Porter (2003).

Local linear regression amounts to weighted least squares estimation of an equation like (6.1.6), with linear

terms only and more weight given to points close to the cuto¤.

Sophisticated nonparametric RD methods have not yet found wide application in empirical practice; most

applied RD work is still parametric. But the idea of focusing on observations near the cuto¤ value - what

Angrist and Lavy (1999) call a "discontinuity sample" - suggests a valuable robustness check: Although RD

estimates get less precise as the window used to select a discontinuity sample gets smaller, the number of

polynomial terms needed to model f(xi) should go down. Hopefully, as you zero in on x0 with fewer and

fewer controls, the estimated e¤ect of di remains stable.2 A second important check looks at the behavior of

2Hoxby (2000) also uses this idea to check RD estimates of class size e¤ects. A fully nonparametric approach requires

data-driven rules for selection of the width of the discontinuity-sample window, also known as "bandwidth". The bandwidth

must shrink with the sample size at a rate su¢ ciently slow so as to ensure consistent estimation of the underlying conditional

mean functions. See Imbens and Lemieux (2007) for details. We prefer to think of estimation using (6.1.4) or (6.1.6) as

essentially parametric: in any given sample, the estimates are only as good as the model for E[y0ijxi] that you happen to be
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pre-treatment variables near the discontinuity. Since pre-treatment variables are una¤ected by treatment,

there should be no jump in the CEF of these variables at x0.

Lee�s (2008) study of the e¤ect of party incumbency on re-election probabilities illustrates the sharp RD

design. Lee is interested in whether the Democratic candidate for a seat in the U.S. House of Representatives

has an advantage if his party won the seat last time. The widely-noted success of House incumbents raises

the question of whether representatives use the privileges and resources of their o¢ ce to gain advantage for

themselves or their parties. This conjecture sounds plausible, but the success of incumbents need not re�ect

a real electoral advantage. Incumbents - by de�nition, candidates and parties who have shown they can win

- may simply be better at satisfying voters or getting the vote out.

To capture the causal e¤ect of incumbency, Lee looks at the likelihood a Democratic candidate wins as

a function of relative vote shares in the previous election. Speci�cally, he exploits the fact that an election

winner is determined by di = 1(xi � :0), where xi is the vote share margin of victory (e.g., the di¤erence

between the Democratic and Republican vote shares when these are the two largest parties). Note that,

because di is a deterministic function of xi, there are no confounding variables other than xi. This is a

signal feature of the RD setup.

Figure 6.1.2a, from Lee (2008), shows the sharp RD design in action. This �gure plots the probability

a Democrat wins against the di¤erence between Democratic and Republican vote shares in the previous

election. The dots in the �gure are local averages (the average win rate in non-overlapping windows of

share margins that are .005 wide); the lines in the �gure are �tted values from a parametric model with a

discontinuity at zero.3 The probability of a democratic win is an increasing function of past vote share. The

most important feature of the plot is the dramatic jump in win rates at the 0 percent mark, the point where

a Democratic candidate gets more votes. Based on the size of the jump, incumbency appears to raise party

re-election probabilities by about 40 percentage points.

Figure 6.1.2b checks the sharp RD identi�cation assumptions by looking at Democratic victories before

the last election. Democratic win rates in older elections should be unrelated to the cuto¤ in the last

election, a speci�cation check that works out well and increases our con�dence in the RD design in this case.

Lee�s investigation of pre-treatment victories is a version of the idea that covariates should be balanced by

treatment status in a (quasi-) randomized trial. A related check examines the density of xi around the

discontinuity, looking for bunching in the distribution of xi near x0. The concern here is that individuals

with a stake in di might try to manipulate xi near the cuto¤, in which case observations on either side

may not be comparable (McCrary 2008 proposes a formal test for this). Until recently, we would have said

this is unlikely in election studies like Lee�s. But the recount in Florida after the 2000 presidential election

suggests we probably should worry about manipulable vote shares when U.S. elections are close.

using. Promises about how you might change the model if you had more data should be irrelevant.
3The �tted values in this �gure are from a Logit model for the probability of winning as a function of the cuto¤ indicator

di = 1(xi � 0), a 4th-order polynomial in xi, and interactions between the polynomial terms and di.
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Figure 6.1.2: Probability of winning an election by past and future vote share (from Lee, 2008). (a) Candi-

date�s probability of winning election t+1, by margin of victory in election t: local averages and parametric

�t. (b) Candidate�s accumulated number of past election victories, by margin of victory in election t: local

averages and parametric �t.



196 CHAPTER 6. REGRESSION DISCONTINUITY DESIGNS

6.2 Fuzzy RD is IV

Fuzzy RD exploits discontinuities in the probability or expected value of treatment conditional on a covariate.

The result is a research design where the discontinuity becomes an instrumental variable for treatment status

instead of deterministically switching treatment on or o¤. To see how this works, let di denote the treatment

as before, though here di is no longer deterministically related to the threshold-crossing rule, xi � x0: Rather,

there is a jump in the probability of treatment at x0, so that

P [di = 1jxi] =

8><>: g0(xi) if xi � x0

g1(xi) if xi < x0

; where g1(x0) 6= g0(x0):

The functions g0(xi) and g1(xi) can be anything as long as they di¤er (and the more the better) at x0. We�ll

assume g1(x0) > g0(x0); so xi � x0 makes treatment more likely. We can write the relation between the

probability of treatment and xi as

E [dijxi] = P [di = 1jxi] = g0(xi) + [g1(xi)� g0(xi)]ti;

where

ti = 1(xi � x0):

The dummy variable ti indicates the point of discontinuity in E [dijxi].

Fuzzy RD leads naturally to a simple 2SLS estimation strategy. Assuming that g0(xi) and g1(xi) can

be described by pth-order polynomials as in (6.1.4), we have

E [dijxi] = 00 + 01xi + 02x
2
i + :::+ 0px

p
i (6.2.1)

+[�0 + 
�
1xi + 

�
2x
2
i + :::+ 

�
px
p
i ]ti

= 00 + 01xi + 02x
2
i + :::+ 0px

p
i

+�0ti + 
�
1xiti + 

�
2x
2
iti + :::+ 

�
px
p
i ti:

From this we see that ti, as well as the interaction terms {xiti, x2iti, . . . x
p
i tig can be used as instruments

for di in (6.1.4).4

The simplest fuzzy RD estimator uses only ti as an instrument, without the interaction terms (with the

4The idea of using jumps in the probability of assignment as a source of identifying information appears to originate with

Trochim (1984), although the IV interpretation came later. Not everyone agrees that fuzzy RD is IV, but this view is catching

on. In a recent history of the RD idea, Cook (2008) writes about the fuzzy design: "In many contexts, the cuto¤ value can

function as an IV and engender unbiased causal conclusions . . . fuzzy assignment does not seem as serious a problem today

as earlier."
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interaction terms in the instrument list, we might also like to allow for interactions in the second stage as

in 6.1.6). The resulting just-identi�ed IV estimator has the virtues of transparency and good �nite-sample

properties. The �rst stage in this case is

di = 0 + 1xi + 2x
2
i + :::+ px

p
i + �ti + �1i; (6.2.2)

where ti is the excluded instrument that provides identifying power with a �rst-stage e¤ect given by �.

The fuzzy RD reduced form is obtained by substituting (6.2.2) into (6.1.4):

yi = �+ �1xi + �2x
2
i + :::+ �px

p
i + ��ti + �2i; (6.2.3)

where � = � + �0 and �j = �1 + �j for j = 1; :::; p. As with sharp RD, identi�cation in the fuzzy case

turns on the ability to distinguish the relation between yi and the discontinuous function, ti = 1(xi � x0);

from the e¤ect of polynomial controls included in the �rst and second stage. In one of the �rst RD studies

in applied econometrics, van der Klaauw (2002) used a fuzzy design to evaluate the e¤ects of university

�nancial aid awards on college enrollment. In van der Klaauw�s study, di is the size of the �nancial aid

award o¤er, and ti is a dummy variable indicating applicants with an ability index above pre-determined

award-threshold cuto¤s.5

Fuzzy RD estimates with treatment e¤ects that change as a function of xi can be constructed by 2SLS

estimation of an equation with treatment-covariate interactions. Here, the second stage model with in-

teraction terms is the same as (6.1.6), while the �rst stage is similar to (6.2.1), except that to match the

second-stage parametrization, we center polynomial terms at x0. In this case, the excluded instruments are

fti, ~xiti, ~x2iti, . . . ~x
p
i tig while the variables fdi, ~xidi, di~xi2, . . . di~xipg are treated as endogenous. The

�rst stage for di becomes

di = 00 + 01~xi + 02~x
2
i + :::+ 0p~x

p
i (6.2.4)

+�0ti + 
�
1~xiti + 

�
2~x
2
iti + :::+ 

�
p~x
p
i ti + �1i:

An analogous �rst stage is constructed for each of the polynomial interaction terms in the set f~xidi, di~xi2,

. . . di~xipg.6

The nonparametric version of fuzzy RD consists of IV estimation in a small neighborhood around the

discontinuity. The reduced-form conditional expectation of yi near x0 is

5van der Klaauw�s original working paper circulated in 1997. Note that the fact that (6.2.2) is only an approximation of

E [dijxi] is not very important; second-stage estimates are still consistent.
6 Alternately, center neither the �rst or second stage. In this case, however, � no longer captures the treatment e¤ect at

the cuto¤.
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E [yijx0 < xi < x0 + �]� E [yijx0 � � < xi < x0] ' ��0:

Similarly, for the �rst stage for di, we have

E [dijx0 < xi < x0 + �]� E [dijx0 � � < xi < x0] ' �0:

Therefore

lim
�!0

E [yijx0 < xi < x0 + �]� E [yijx0 � � < xi < x0]

E [dijx0 < xi < x0 + �]� E [dijx0 � � < xi < x0]
= �: (6.2.5)

The sample analog of (6.2.5) is a Wald estimator of the sort discussed in Section ??, in this case using ti

as an instrument for di in a ��neighborhood of x0. As with other dummy-variable instruments, the result

is a local average treatment e¤ect. In particular, the Wald estimand for fuzzy RD captures the causal e¤ect

on compliers de�ned as individuals whose treatment status changes as we move the value of xi from just to

the left of x0 to just to the right of x0. This interpretation of fuzzy RD was introduced by Hahn, Todd, and

van der Klaauw (2001). Note, however, that there is another sense in which this version of LATE is local:

the estimates are for compliers with xi = x0, a feature of sharp nonparametric estimates as well.

Finally, note that as with the nonparametric version of sharp RD, the �nite-sample behavior of the

sample analog of (6.2.5) is not likely to be very good. Hahn, Todd, and van der Klaauw (2001) develop

a nonparametric IV procedure using local linear regression to estimate the top and bottom of the Wald

estimator with less bias. This takes us back to a 2SLS model with linear or polynomial controls, but

the model is �t in a discontinuity sample using a data-driven bandwidth. The idea of using discontinuity

samples informally also applies in this context: start with a parametric 2SLS setup in the full sample, say,

based on (6.1.4). Then restrict the sample to points near the discontinuity and get rid of most or all of the

polynomial controls. Ideally, 2SLS estimates in the discontinuity samples with few controls will be broadly

consistent with the more precise estimates constructed using the larger sample.

Angrist and Lavy (1999)use a fuzzy RD research design to estimate the e¤ects of class size on children�s

test scores, the same question addressed by the STAR experiment discussed in Chapter 2. Fuzzy RD is

an especially powerful and �exible research design, a fact highlighted by the Angrist and Lavy study, which

generalizes fuzzy RD in two ways relative to the discussion above. First, the causal variable of interest, class

size, takes on many values. So the �rst stage exploits jumps in average class size instead of probabilities.

Second, the Angrist and Lavy (1999) research design uses multiple discontinuities.

The Angrist and Lavy study begins with the observation that class size in Israeli schools is capped at

40. Students in a grade with up to 40 students can expect to be in classes as large as 40, but grades with 41

students are split into two classes, grades with 81 students are split into three classes, and so on. Angrist
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and Lavy call this "Maimonides Rule" since a maximum class size of 40 was �rst proposed by the medieval

Talmudic scholar Maimonides. To formalize Maimonides Rule, let msc denote the predicted class size (in a

given grade) assigned to class c in school s, where enrollment in the grade is denoted es: Assuming grade

cohorts are split up into classes of equal size, the predicted class size that results from a strict application of

Maimonides�Rule is

msc =
es

int[ (es�1)40 ] + 1

where int(x) is the integer part of a real number, x. This function, plotted with dotted lines in Figure

6.2.1 for fourth and �fth graders, has a sawtooth pattern with discontinuities (in this case, sharp drops in

predicted class size) at integer multiples of 40. At the same time, msc is clearly an increasing function of

enrollment, es, making the enrollment variable an important control.

Angrist and Lavy exploit the discontinuities in Maimonides Rule by constructing 2SLS estimates of an

equation like

yisc = �0 + �1pds + �1es + �2e
2
s + :::+ �pe

p
s + �nsc + �isc; (6.2.6)

where yisc is i0s test score in school s and class c, nsc is the size of this class, and es is enrollment. In this

version of fuzzy RD, msc plays the role of ti; es plays the role of xi; and class size, nsc plays the role of

di: Angrist and Lavy also include a non-enrollment covariate, pds, to control for the proportion of students

in the school from a disadvantaged background. This is not necessary for RD, since the only source of

omitted variables bias in the RD model is es, but it makes the speci�cation comparable to the model used

to construct a corresponding set of OLS estimates.7

Figure 6.2.1 from Angrist and Lavy (1999) plots the average of actual and predicted class sizes against

enrollment in fourth and �fth grade. Maimonides�Rule does not predict class size perfectly because some

schools split grades at enrollments lower than 40. This is what makes the RD design fuzzy. Still, there are

clear drops in class size at enrollment levels of enrollment levels of 40, 80, and 120. Note also that the msc

instrument neatly combines both discontinuities and slope-discontinuity interactions such as ~xiti in (6.2.4)

in a single variable. This compact parametrization comes from a speci�c understanding of the institutions

and rules that determine Israeli class size.

Estimates of equation (6.2.6) for �fth-grade Math scores are reported in Table 6.2.1, beginning with OLS.

With no controls, there is a strong positive relationship between class size and test scores. Most of this

vanishes however, when the percent disadvantaged in the school is included as a control. The correlation

between class size and test scores shrinks to insigni�cance when enrollment is added as an additional control,

as can be seen in column 3. Still, there is no evidence that smaller classes are better, as we might believe

based on the results from the Tennessee STAR randomized trial.

7The Angrist and Lavy (1999) study di¤ers modestly from the description here in that the data used to estimate equation

(6.2.6) are class averages. But since the covariates are all de�ned at the class or school level, the only di¤erence between

student-level and class-level estimation is the implicit weighting by number of students in the student-level estimates.
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Figure 6.2.1: The fuzzy-RD �rst-stage for regression-discontinuity estimates of the e¤ect of class size on

pupils�test scores (from Angrist and Lavy, 1999)
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In contrast with the OLS estimates in column 3, 2SLS estimates of similar speci�cation using msc as

an instrument for nsc strongly suggest that smaller classes increase test scores. These results, reported in

column 4 for models that include a linear enrollment control and in column 5 for models that include a

quadratic enrollment control range from -.23 to -.26 with standard error around .1. These results suggest

a 7-student reduction in class size (as in Tennessee STAR) raises Math scores by about 1.75 points, for an

e¤ect size of .18�, where � is the standard deviation of class average scores. This is not too far from the

Tennessee estimates.

Importantly, the functional form of the enrollment control does not seem to matter very much (though

estimates with no controls - not reported in the table - come out much smaller and insigni�cant). Columns

6 and 7 check the robustness of the main �ndings using a +/-5 discontinuity sample. Not surprisingly, these

results are much less precise than those reported in columns 5 and 6 since they were estimated with only

about one-quarter of the data used to construct the full-sample estimates. Still, they bounce around the -.25

mark. Finally, the last column shows the results of estimation using an even narrower discontinuity sample

limited to schools with plus or minus an enrollment of 3 students around the discontinuities at 40, 80, and

120 (with dummy controls for which of these discontinuities is relevant). These are Wald estimates in the

spirit of Hahn, Todd, and van der Klaauw (2001) and formula (6.2.5); the instrument used to construct these

estimates is a dummy for being in a school with enrollment just to the right of the relevant discontinuity.

The result is an imprecise -.270 (s.e.=.281), but still strikingly similar to the other estimates in the table.

This set of estimates illustrates the high price to be paid in terms of precision when we shrink the sample

around the discontinuities. Happily, however, the picture that emerges from Table (6.2.1) is fairly clear.
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