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Causal Inference Political Economy

Regression Discontinuities

É Natural Experiments
É As always, we need some ’as-if’ random variation in

assignment to treatment to get plausible counterfactuals

É Regression discontinuities take advantage of social rules that
treat similar people differently

É Specifically, similar people with slightly different ’scores’ are
assigned to treatment/control
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Causal Inference Political Economy

É Regression Discontinuity
É Treatment assignment is ’as-if’ random only really close to
the threshold

D =

¨

1 if  ≥ ̄
0 if  < ̄

É For units just above and below the threshold:
É Their covariates are almost the same
É Their potential outcomes are (on average) almost the same
É They are plausible counterfactuals for each other

É So we can compare them directly
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Causal Inference Political Economy

É Example thresholds:
É Exam cutoffs
É Age cutoffs
É Policy eligibility rules
É Close elections
É Adminsitrative boundaries
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Causal Inference Political Economy

É Regresssion Discontinuity Variables:
É Running Variable, : The continuous variable to which the

threshold/cutoff is applied, eg. exam score

É Treatment, D: Binary 0/1 depending on whether the
running variable is above or below the threshold ( >= ̄)

É Outcome, Y: Any subsequent outcome you have measured
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Causal Inference Political Economy

É Regression Discontinuity Assumptions:
É Potential outcomes vary continuously (are independent of

treatment) at the threshold

É Units cannot precisely control their score and sort either side
of the threshold

É The threshold is not chosen strategically
É No compound treatments
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Causal Inference Political Economy

É Thresholds more likely to be exogenous if:

É Units are not aware of the threshold
É The threshold is decided after units make choices
É The running variable is hard to manipulate precisely

É We need qualitative evidence to support these assumptions
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Causal Inference Political Economy

É We can check for sorting with a density test
É If units are bunched just above the threshold, this suggests

manipulation
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Causal Inference Political Economy

É Three Regression Discontinuity Methodologies:
1. Difference-in-means: Define a small window either side of

the threshold and compare average outcomes in this window
É But can be biased since the correlation of the running variable

with the outcome will be ignored

2. ’Parametric’ regression discontinuity: Uses all the data
and estimates:

Y = α + β1Rnnng_Vrbe + β2Tretment + ε

É We just control for the ’smooth’ variation in the running
variable and estimate the ’jump’ impact of treatment with a
binary variable (dummy)

É We may need to make the running variable non-linear

3. Combined approach: Focus on values close to the
threshold, but use a (local) regression
É What bandwidth around the threshold do we use?
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Raw Data
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’Binned’ Data
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Causal Inference Political Economy

1. Difference-in-Means
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Causal Inference Political Economy

2a. Parametric Regression - Linear
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2b. Parametric Regression - Non-linear
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3. Combined Approach - Local Linear
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Causal Inference Political Economy

É Which method?

É Difference-in-means is probably biased, and we can easily do
better

É The parametric approach uses more data (+precision) but
depends on the right model: linear, quadratic, etc. (+risk of
bias)

É The combined approach uses less data (-precision) but is less
dependent on the right model (-risk of bias)

É In practice, apply all three as robustness checks
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Causal Inference Political Economy

É Why does RD estimate a Local Average Treatment Effect?

É Treatment assignment is only random at the threshold
É Our estimates only apply to units close to the threshold
É Units far from the threshold are very different for a reason,

and causal effects are likely to be different
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Causal Inference Political Economy

É Limitations:
É Opportunistic regression discontinuities may not identify a

useful causal effect or for a relevant group

É Lots of alternative specifications so no single simple test
É Less precise than a randomized trial, so we need more data
É Risk of sorting/manipulation
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Causal Inference Political Economy

É Close elections are one type of regression discontinuity in
which political office is ’as-if’ randomized

É Particularly useful for understanding the effects of political
power
É Running Variable: Margin of victory
É Treatment: Winning a close election
É Control: Losing a close election
É Outcome: Anything that happens later...
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Causal Inference Political Economy

É How much faith should we have in ’close election’
regression discontinuities?

É Eggers et al (2013):
É US House of Representatives elections show sorting in very

close elections (<1%)
É Politicians (incumbents, the wealthy) can control whether

they win, even when it’s a tight race
É They have extremely detailed information to predict vote

results
É So potential outcomes are not balanced
É But no other case (9 countries) has this problem
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Causal Inference Political Economy

Political Economy: Incumbency
Power
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Causal Inference Political Economy

É One of the ways in which elites exert power is through
control of the state (=incumbency)

É Directing public resources to political allies or competitive
places

É Clientelism and patronage
É Corruption for campaign financing
É Media control
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Causal Inference Political Economy

É Titiunik (2011)

É Do Brazilian parties have an incumbency advantage?
É Incumbent at time t -> Higher vote share at time t+1
É We could just do the observational regression

Vote_Shret+1, = α + βncmbentt, + ε

É What is the challenge to causal inference?
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Causal Inference Political Economy

É Titiunik (2011)

É We need ’as-if’ random variation in incumbency status to
balance potential outcomes

É While politicians greatly influence electoral outcomes, there
is also a big element of chance
É Rain in one part of the city
É A rumour that spreads on election day
É Undecided voters influenced by events in other countries

É These random factors decide close elections
É Within 1-2% points, elections are a coin flip
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Causal Inference Political Economy

É Titiunik (2011)
É Regression discontinuity on winning margin of each party

É Population: Elections in Brazil in 2000
É Sample: Close elections for PMDB, PSDB and PFL

(first-round)
É Treatment: Just winning a close election in 2000
É Control: Just losing a close election in 2000
É Treatment Assignment: Messy, but ’as-if’ random in close

elections
É Outcome: Vote share for party in 2004
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É Critique:

É Municipalities that are competitive are unusual, so we learn
nothing about media control in dominated places

É No real discussion of whether they’re correctly modelling the
relationship between vote margin and the outcome

É Is it necessarily wrong that incumbents are more likely to get
approval? Perhaps they learn valuable information or
professionalism as soon as they come to office
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in Bihar because:

É Socioeconomic, geographic and national governance
conditions are very similar at the border
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experienced the same relationship with government
É The border was set according to old district borders, and not

politically
É Jharkhand did not experience the same governance

improvements as Bihar

40 / 49



Causal Inference Political Economy

É People in Jharkhand are plausible counterfactuals to people
in Bihar because:
É Socioeconomic, geographic and national governance

conditions are very similar at the border

É Families have lived in their villages for decades
É The two states were only created in 2001; before that they

experienced the same relationship with government
É The border was set according to old district borders, and not

politically
É Jharkhand did not experience the same governance

improvements as Bihar

40 / 49



Causal Inference Political Economy

É People in Jharkhand are plausible counterfactuals to people
in Bihar because:
É Socioeconomic, geographic and national governance

conditions are very similar at the border
É Families have lived in their villages for decades

É The two states were only created in 2001; before that they
experienced the same relationship with government

É The border was set according to old district borders, and not
politically

É Jharkhand did not experience the same governance
improvements as Bihar

40 / 49



Causal Inference Political Economy

É People in Jharkhand are plausible counterfactuals to people
in Bihar because:
É Socioeconomic, geographic and national governance

conditions are very similar at the border
É Families have lived in their villages for decades
É The two states were only created in 2001; before that they

experienced the same relationship with government

É The border was set according to old district borders, and not
politically

É Jharkhand did not experience the same governance
improvements as Bihar

40 / 49



Causal Inference Political Economy

É People in Jharkhand are plausible counterfactuals to people
in Bihar because:
É Socioeconomic, geographic and national governance

conditions are very similar at the border
É Families have lived in their villages for decades
É The two states were only created in 2001; before that they

experienced the same relationship with government
É The border was set according to old district borders, and not

politically

É Jharkhand did not experience the same governance
improvements as Bihar

40 / 49



Causal Inference Political Economy

É People in Jharkhand are plausible counterfactuals to people
in Bihar because:
É Socioeconomic, geographic and national governance

conditions are very similar at the border
É Families have lived in their villages for decades
É The two states were only created in 2001; before that they

experienced the same relationship with government
É The border was set according to old district borders, and not

politically
É Jharkhand did not experience the same governance

improvements as Bihar

40 / 49



Causal Inference Political Economy

É Geographic Regression Discontinuity Design
É Exactly the same as a normal regression discontinuity, but in
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É The Running Variable: Longitude and latitude
É Treatment: Residents on the Bihar side of the border
É Control: Residents on the Jharkhand side of the border
É Treatment Assignment: Family history, state separation in

2001, and migration
É Outcome: Political attitudes and behaviour
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Border Effect: 0.882, p−value: 0
Bihar

Jharkhand

2.5 3.0
Value

Predicted Value Plot of Likelihood of Incumbent Providing Public Goods
if Reelected
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Border Effect: 0.176, p−value: 0.018
Bihar

Jharkhand
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Value

Predicted Value Plot of Likelihood of Corrupt Elite being Caught
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Border Effect: −0.038, p−value: 0.01
Bihar

Jharkhand
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Predicted Value Plot of Estimated Government Contacts Network Size
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Border Effect: −0.471, p−value: 0
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Predicted Value Plot of Gram Sabha Attendance
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Border Effect: −0.239, p−value: 0.001
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Predicted Value Plot for Trust in the Civil Service
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É Interpretation:
É Programmatic policy has changed voters’ attitudes and

expectations

É Incumbents’ policy has political feedback effects
É Coordination among voters has helped re-elect the reformer

twice
É But no fundamental change in vulnerability or aversion to

clientelism
É A reduction in clientelism may also have reduced political

participation/trust
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