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Causal Inference Political Economy

Difference-in-Differences

É Our basic causal inference problem is that confounding
makes counterfactual cases implausible (biased)

É If we compare separate treatment and control units when
treatment assignment is not random:
É The control units have different levels of the outcome for

many reasons, not just treatment
É If we compare the same unit before and after treatment:

É Other factors influencing the outcome might also have
changed between our measurements (eg. any news event!)
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Causal Inference Political Economy

Difference-in-Differences

É But what if we combine these approaches?

É We can keep lots of variables fixed if we compare the same
unit before and after treatment

É We can measure how much other factors changed over time
if we have units that were not exposed to treatment
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Causal Inference Political Economy

Difference-in-Differences

É Example: How has Brexit affected the UK’s growth rate?

É Comparing with European growth rates is biased - UK growth
is influenced by oil, different labour laws etc.

É Comparing before and after Brexit is biased - the world
economy improved around the same time as Brexit
(coincidentally)

É But compare how European growth changes (-0.05%) and UK
growth changed (-0.4%)

É The net effect of Brexit is -0.35%
É That’s two differences

É Difference 1: Between before and after (over time)
É Difference 2: Between treated and control units
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Causal Inference Political Economy

Difference-in-Differences

É We’re now comparing changes (differences), not levels of
the outcome
É Most confounders affect levels, so this makes our

counterfactuals more plausible
É Eg. different laws affect growth rates, not the change in growth

over time
É And crucially, we can remove confounding even for

unobserved confounders
É So Diff-in-Diff is ’better’ than controlling or matching, which

only eliminate observed (measured) confounding
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Causal Inference Political Economy

Difference-in-Differences

É BUT treatment assignment is still nowhere near
random

É So this is not a natural experiment
É Lots of confounders can still affect trends

É That creates bias in our causal estimates
É Eg. the UK’s growth rate was falling even before the Brexit

vote, but Europe was improving

É Diff-in-Diff is ’worse’ than natural experiments
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Difference-in-Differences
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Causal Inference Political Economy

Difference-in-Differences

É Difference-in-differences only removes time-invariant
confounders

É Factors that create differences in the levels of the outcome
variable for treatment and control units

É We still need to make the assumption and argument
that there are no time-varying confounders

É Factors that affect the trend in the outcome differentially in
treated and control units

É Eg. The UK had falling consumer confidence while
confidence in the eurozone was improving
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Difference-in-Differences
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Causal Inference Political Economy

Difference-in-Differences
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Causal Inference Political Economy

Difference-in-Differences

É Estimating Difference-in-Differences

É Time (Before and after) and treatment status (treated and
control) are just variables in our data

É We know how to do a regression for the effect of treatment
status on the outcome

Yt = α + γD

É The difference-in-differences estimate is just the interaction
of time and treatment status

Yt = α + γD + δTt + βD ∗ Tt

É β is our causal effect estimate
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Causal Inference Political Economy

Difference-in-Differences

Yt = α + γD + δTt + βD ∗ Tt

É Difference-in-Differences means:
�

E(Y,t=1|D = 1) − E(Y,t=0|D = 1)
�

−
�

E(Y,t=1|D = 0) − E(Y,t=0|D = 0)
�
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Causal Inference Political Economy

Difference-in-Differences

É The other way of thinking about the
difference-in-differences estimator is as controlling for
variation over time and between treated and control units

É Including a variable for time is a fixed effect for time

É Including a variable for treated/control is a fixed effect for
treatment status

É These ’remove’ the ’levels’ of variation between the treated
and control units, and the ’overall trend’ in all the data over
time...

É ...the only variation left in our data is the differential
change over time between treated and control units

É That’s our causal effect
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Difference-in-Differences

Raw Data:
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Difference-in-Differences

Add a variable (fixed effect) for treated/control:
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Difference-in-Differences
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0

5

10

Before After

Time

O
ut

co
m

e Unit

Control

Treated

18 / 48



Causal Inference Political Economy

Difference-in-Differences

Add a variable (fixed effect) for time:
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Causal Inference Political Economy

Difference-in-Differences

É How do we know if there are time-varying confounders?

É We really want the outcome for the treated group to have
the same trend as the control group
É So any difference in trend is only due to treatment

É One test of this is to check if pre-treatment trends are
parallel

É Then our counterfactual makes sense
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Difference-in-Differences
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Causal Inference Political Economy

Difference-in-Differences

É Parallel trends (no time-varying confounders) is a difficult
assumption

É Selection into treatment is usually not just due to mostly
’fixed’ variables (eg. gender) but due to ’time-varying’
variables (eg. income, employment etc.)

É Eg. training program participants’ income has usually fallen
a lot in the past few months

É A good test is to see if there is an effect from ’placebos’ -
testing for treatment effects at times before treatment
happened
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Causal Inference Political Economy

Difference-in-Differences

É Even if pre-treatment trends are the same, treatment needs
to be carefully defined:

É Our estimate is based entirely on what affects treated units
at a specific point in time

É But many things may have changed at the same time

É If these changes differentially affect treated and control
units, they change what we are estimating: a compound
treatment

É Eg. The UK also announced new rules to regulate the
banking sector on the same day as Brexit

24 / 48



Causal Inference Political Economy

Difference-in-Differences

É Even if pre-treatment trends are the same, treatment needs
to be carefully defined:

É Our estimate is based entirely on what affects treated units
at a specific point in time

É But many things may have changed at the same time

É If these changes differentially affect treated and control
units, they change what we are estimating: a compound
treatment

É Eg. The UK also announced new rules to regulate the
banking sector on the same day as Brexit

24 / 48



Causal Inference Political Economy

Difference-in-Differences

É Even if pre-treatment trends are the same, treatment needs
to be carefully defined:

É Our estimate is based entirely on what affects treated units
at a specific point in time

É But many things may have changed at the same time

É If these changes differentially affect treated and control
units, they change what we are estimating: a compound
treatment

É Eg. The UK also announced new rules to regulate the
banking sector on the same day as Brexit

24 / 48



Causal Inference Political Economy

Difference-in-Differences

É Even if pre-treatment trends are the same, treatment needs
to be carefully defined:

É Our estimate is based entirely on what affects treated units
at a specific point in time

É But many things may have changed at the same time

É If these changes differentially affect treated and control
units, they change what we are estimating: a compound
treatment

É Eg. The UK also announced new rules to regulate the
banking sector on the same day as Brexit

24 / 48



Causal Inference Political Economy

Difference-in-Differences

É Even if pre-treatment trends are the same, treatment needs
to be carefully defined:

É Our estimate is based entirely on what affects treated units
at a specific point in time

É But many things may have changed at the same time

É If these changes differentially affect treated and control
units, they change what we are estimating: a compound
treatment

É Eg. The UK also announced new rules to regulate the
banking sector on the same day as Brexit

24 / 48



Causal Inference Political Economy

Difference-in-Differences

É Our groups need to be stable and unaffected by treatment

É Eg. No migration due to treatment

É Bertrand et al (2003):
É Careful with standard errors
É Especially if more than two time periods (auto-correlation)
É So cluster standard errors by each cross-sectional unit (eg.

each country)
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Causal Inference Political Economy

Dube and Vargas 2008

É How do changes in income affect violence?

É Opportunity Cost: People less likely to fight if higher
returns from legal activity

É Rapacity: People more likely to fight if more to be stolen
É Which dominates depends on whether the extra income is

wages (can’t be stolen) or capital
É Labour-intensive income boost -> less conflict (Coffee)
É Capital-intensive income boost -> more conflict (Oil)

É What is the barrier to causal inference here?
É Reverse causation: Less violence causes more income
É Confounding: More effective government raises income and

lowers violence
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Causal Inference Political Economy

Dube and Vargas 2008

É Difference-in-Differences helps because:

É Controls for all (observed and unobserved) non-time-varying
confounders

É Prevents reverse causation: See how violence changes after
treatment

É International prices are used for treatment, which are even
more ’exogenous’

É Compare changes in violence in coffee-growing areas to
changes in violence in non-growing areas

É They go beyond ’before’ and ’after’, using the long-term
change in oil/coffee prices themselves (continuous
treatment variable)
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Causal Inference Political Economy

Dube and Vargas 2008

É Population:

Colombian municipalities

É Sample: Colombian municipalities

É Treatment: Coffee income falls (OR Oil income rises)

É Control: No change in income

É Treatment Assignment Mechanism: NOT random:
coffee- and oil-growing places are very different

É Outcome: Attacks, casualties
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Causal Inference Political Economy

Dube and Vargas 2008

É Methodology:

Cstest = α + γt + δ + β(O_Prcet ∗O_Prodcton) + εt

Cstest = α+γt+δ+β(Coƒ ƒee_Prcet∗Coƒ ƒee_Prodcton)+εt
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Causal Inference Political Economy

Dube and Vargas 2008

É Results:

É 13% increase in attacks in oil-producing regions as oil prices
rose

É 27% increase in attacks in oil-pipeline regions as oil prices
rose

É 9% increase in attacks in coffee-producing regions as coffee
prices fell

É Supportive evidence that wages decrease as coffee prices fall
and state revenues increase as oil prices rise
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Causal Inference Political Economy

Chimeli and Soares 2017

É How does an activity being illegal affect violence?

É How did Brazil’s ban on mahogany affect homicides?
É What are the barriers to causal inference?

É Confounders, eg. State capacity
É Reverse causation, eg. Violence causes associated activities

to be outlawed
É Other evidence only from drugs, which are directly connected

to violence
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Causal Inference Political Economy

Chimeli and Soares 2017

É Diff-in-Diff helps here because:

É Repeated measurement before and after treatment
É No risk of reverse causation: Change in violence measured

after treatment
É No risk of confounding by ’fixed’ (non-time-varying)

confounders, eg. state capacity

É Comparing the change in violence in mahogany-growing
areas to the change in violence in non-growing areas
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Causal Inference Political Economy

Chimeli and Soares 2017

É Population:

Brazilian municipalities

É Sample: Brazilian municipalities

É Treatment: Mahogany activites banned (post-1998 and in
municipalities exporting mahogany)

É Control: No mahogany activites to be banned (pre-1998
OR in municipalities without mahogany)

É Treatment Assignment Mechanism: NOT random: Ban
affects only mahogany-growing places, which are more rural
and poorer

É Outcome: Rate of Homicides
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Causal Inference Political Economy

Chimeli and Soares 2017

É Multiple treatment timings:
É 1st policy change
É 2nd policy change
É Reverse treatment: Better policing of mahogany regulations
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Causal Inference Political Economy

Chimeli and Soares 2017

É Methodology:

Homcdest = γt + δ + β(Post − 1998t ∗Mhogny) + ε

É Apply more complex state-specific trends for covariates to
minimize risk of non-parallel trends

É Cluster standard errors by municipality

É Supporting evidence: The ’extra’ homicides were the type
we’d expect from illegal activity
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Causal Inference Political Economy

Difference-in-Differences
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Causal Inference Political Economy

Chimeli and Soares 2017

É Interpretation
É Illegal activity prevents ’peaceful’ contract enforcement
É Competition between loggers
É Contract enforcement with buyers
É Intimidation of communities to not report logging
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Causal Inference Political Economy

Bundervoet et al 2008

É What is the impact of (the Burundian) civil war on children’s
health?

É What is the challenge to causal inference here?
É Confounding: Poorly governed places more likely to be at

war and have poor health
É Selection: Fighters target poorer places where children have

poor health
É Confounding: Older children are more exposed to conflict

and have worse height-for-age mechanically
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Causal Inference Political Economy

Lyall 2009

É A difference-in-differences methodology helps:
É Correct sequencing of Russian artillery, then measuring

change in rebel attacks
É Control for differences between places that did and did not

have attacks

É Comparing the change in attacks before and after shelling in
shelled vs. non-shelled villages
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Lyall 2009

É Methodology:

É Balance tests suggest randomization on observables holds,
but not sufficient

É Pre-Regression Matching to make sure we’re comparing
similar shelled and non-shelled villages
É Should help with ensuring parallel trends

É Then finally a difference-in-differences method
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