FLS 6441 - Methods III: Explanation and Causation

Week 11 - Comparative Case Studies & Process Tracing

Jonathan Phillips

May 2020

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	000000000000000000000000000000000000000

Classification of Research Designs

		Independence of Treatment Assignment	Researcher Con- trols Treatment Assignment?
Controlled	Field Experiments	√	√
Experiments	Survey and Lab Experiments	√	√
	Natural Experiments	√	
Natural	Instrumental Variables	√	
experiments	Discontinuities	√	
	Difference-in-Differences		
Observational	Controlling for Confounding		
Studies	Matching		
	Comparative Cases and Process Tracing		

Section 1

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	0000000000000000

 Necessary when there are few measurable cases of our treatment/outcome

- Necessary when there are few measurable cases of our treatment/outcome
- ► Exactly the same causal inference logic as Large-N

- Necessary when there are few measurable cases of our treatment/outcome
- Exactly the same causal inference logic as Large-N
- ► The Fundamental Problem of Causal Inference
 - We need counterfactuals to estimate treatment effects:
 Comparative Cases

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	000000000000000

Why can't we achieve causal inference from single case studies?

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	000000000000000

- Why can't we achieve causal inference from single case studies?
- If we have only one 'treated' observation, we cannot know what would have happened in the absence of treatment
 - Exactly the same outcome could have occurred

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	000000000000000000000000000000000000000

- Why can't we achieve causal inference from single case studies?
- If we have only one 'treated' observation, we cannot know what would have happened in the absence of treatment
 - Exactly the same outcome could have occurred
- ► These case studies can help *generate* hypotheses...

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	000000000000000000000000000000000000000

- Why can't we achieve causal inference from single case studies?
- If we have only one 'treated' observation, we cannot know what would have happened in the absence of treatment
 - Exactly the same outcome could have occurred
- ► These case studies can help *generate* hypotheses...
- ...And they can maybe weaken a theory... eg. if the outcome is absent with treatment

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	000000000000000000000000000000000000000

- Why can't we achieve causal inference from single case studies?
- If we have only one 'treated' observation, we cannot know what would have happened in the absence of treatment

Exactly the same outcome could have occurred

- ► These case studies can help *generate* hypotheses...
- ...And they can maybe weaken a theory... eg. if the outcome is absent with treatment
- But they cannot confirm a theory

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	000000000000000000000000000000000000000

- Why can't we achieve causal inference from single case studies?
- If we have only one 'treated' observation, we cannot know what would have happened in the absence of treatment

Exactly the same outcome could have occurred

- ► These case studies can help *generate* hypotheses...
- ...And they can maybe weaken a theory... eg. if the outcome is absent with treatment
- But they cannot confirm a theory
- We need variation in the dependent variable if we are to explain it

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	000000000000000000000000000000000000000

- Why can't we achieve causal inference from single case studies?
- If we have only one 'treated' observation, we cannot know what would have happened in the absence of treatment

Exactly the same outcome could have occurred

- ► These case studies can help *generate* hypotheses...
- ...And they can maybe weaken a theory... eg. if the outcome is absent with treatment
- But they cannot confirm a theory
- We need variation in the dependent variable if we are to explain it
- Common error: "research that tries to explain the outbreak of war with studies only of wars" (KKV)

In a small-N study, what causal inference technique is most useful?

- In a small-N study, what causal inference technique is most useful?
 - Field experiments: If we can randomly treat two units, we can treat more

- In a small-N study, what causal inference technique is most useful?
 - Field experiments: If we can randomly treat two units, we can treat more
 - Natural experiments: Possible, but rare

- In a small-N study, what causal inference technique is most useful?
 - Field experiments: If we can randomly treat two units, we can treat more
 - Natural experiments: Possible, but rare
 - Diff-in-diff: Maybe if we have time-series data

- In a small-N study, what causal inference technique is most useful?
 - Field experiments: If we can randomly treat two units, we can treat more
 - Natural experiments: Possible, but rare
 - Diff-in-diff: Maybe if we have time-series data
 - Controlling: Not enough observations for parametric adjustments

- In a small-N study, what causal inference technique is most useful?
 - Field experiments: If we can randomly treat two units, we can treat more
 - Natural experiments: Possible, but rare
 - Diff-in-diff: Maybe if we have time-series data
 - Controlling: Not enough observations for parametric adjustments
 - Matching: More useful

Matching is the 'Comparative Method'

Don't look at the outcome variable

- Don't look at the outcome variable
- Split the sample on a single binary treatment variable

- Don't look at the outcome variable
- Split the sample on a single binary treatment variable
- Balance on confounders through careful case selection remove unmatched cases

- Don't look at the outcome variable
- Split the sample on a single binary treatment variable
- Balance on confounders through careful case selection remove unmatched cases
- We can't match on everything, so focus on getting balance on key confounders/alternative theories

- Don't look at the outcome variable
- Split the sample on a single binary treatment variable
- Balance on confounders through careful case selection remove unmatched cases
- We can't match on everything, so focus on getting balance on key confounders/alternative theories
- Our Large-N dataset reduced after matching might look reasonably similar to comparative case studies

Comparative Case Studies	Mixed Methods	Process Tracing
000000000000000000000000000000000000000	000	000000000000000000000000000000000000000

Does Development cause Democracy?

- Does Development cause Democracy?
- We want cases which vary in level of development

- Does Development cause Democracy?
- We want cases which vary in level of development
- But are identical in all other ways

- Does Development cause Democracy?
- We want cases which vary in level of development
- But are identical in all other ways Impossible!

- Does Development cause Democracy?
- We want cases which vary in level of development
- But are identical in the other variables theory suggests might be confounders

- Does Development cause Democracy?
- We want cases which vary in level of development
- But are identical in the other variables theory suggests might be confounders **Possible!**
 - Or at least those variables which suggest the treated case would be *more* democratic

- Does Development cause Democracy?
- We want cases which vary in level of development
- But are identical in the other variables theory suggests might be confounders **Possible!**
 - Or at least those variables which suggest the treated case would be *more* democratic
- Alternative Theories of Democratization:
 - 1. Geography

- Does Development cause Democracy?
- We want cases which vary in level of development
- But are identical in the other variables theory suggests might be confounders **Possible!**
 - Or at least those variables which suggest the treated case would be *more* democratic
- Alternative Theories of Democratization:
 - 1. Geography
 - 2. Religion/culture

- Does Development cause Democracy?
- We want cases which vary in level of development
- But are identical in the other variables theory suggests might be confounders **Possible!**
 - Or at least those variables which suggest the treated case would be *more* democratic
- Alternative Theories of Democratization:
 - 1. Geography
 - 2. Religion/culture
 - 3. Inequality

- Does Development cause Democracy?
- We want cases which vary in level of development
- But are identical in the other variables theory suggests might be confounders **Possible!**
 - Or at least those variables which suggest the treated case would be *more* democratic
- Alternative Theories of Democratization:
 - 1. Geography
 - 2. Religion/culture
 - 3. Inequality
 - 4. Slow economic growth

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	0000000000000000

Does Development cause Democracy?

	Variable	Case A	Case B
Outcome	Democracy	?	?
Treatment	Development	Low	High
Controls	Religion	Christian	Christian
	Continent	Europe	Europe
	Inequality	0.45	0.65
	Economic growth	1.2%	2%
	National dish	Pasta	Corn
	Length of Railways	400km	120km

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	0000000000000000

Does Development cause Democracy?

	Variable	Case A	Case B
Outcome	Democracy	?	?
Treatment	Development	Low	High
Controls	Religion	Christian	Christian
	Continent	Europe	Europe
	Inequality	0.45	0.44
	Economic growth	1.2%	2%
	National dish	Pasta	Corn
	Length of Railways	400km	120km
Comparative Case Studies	Mixed Methods	Process Tracing	
--------------------------	---------------	---	
00000000000000	000	000000000000000000000000000000000000000	

► Similarities with Large-N:

Comparative Case Studies	Mixed Methods	Process Tracing
00000000000000	000	0000000000000000

- ► Similarities with Large-N:
 - Same challenges to inference: confounding, selection, reverse causation

Comparative Case Studies	Mixed Methods	Process Tracing
00000000000000	000	0000000000000000

- ► Similarities with Large-N:
 - Same challenges to inference: confounding, selection, reverse causation
 - Same assumptions required: SUTVA, Balance on all confounders

Comparative Case Studies	Mixed Methods	Process Tracing
00000000000000	000	0000000000000000

- ► Similarities with Large-N:
 - Same challenges to inference: confounding, selection, reverse causation
 - Same assumptions required: SUTVA, Balance on all confounders
- Differences with Large-N:
 - ► Harder to balance confounders: More variables than cases!

Comparative Case Studies	Mixed Methods	Process Tracing
00000000000000	000	000000000000000

- ► Similarities with Large-N:
 - Same challenges to inference: confounding, selection, reverse causation
 - Same assumptions required: SUTVA, Balance on all confounders
- Differences with Large-N:
 - ► Harder to balance confounders: More variables than cases!
 - Fewer comparisons: No uncertainty measure or confidence intervals. What's our standard of evidence?

Comparative Case Studies	Mixed Methods	Process Tracing
00000000000000	000	000000000000000000

- ► Similarities with Large-N:
 - Same challenges to inference: confounding, selection, reverse causation
 - Same assumptions required: SUTVA, Balance on all confounders
- Differences with Large-N:
 - ► Harder to balance confounders: More variables than cases!
 - Fewer comparisons: No uncertainty measure or confidence intervals. What's our standard of evidence?
 - p-values aren't the only source of credibility (Slater and Ziblatt 2013)

Comparative Case Studies	Mixed Methods	Process Tracing
00000000000000	000	0000000000000000

- ► Similarities with Large-N:
 - Same challenges to inference: confounding, selection, reverse causation
 - Same assumptions required: SUTVA, Balance on all confounders
- Differences with Large-N:
 - ► Harder to balance confounders: More variables than cases!
 - Fewer comparisons: No uncertainty measure or confidence intervals. What's our standard of evidence?
 - p-values aren't the only source of credibility (Slater and Ziblatt 2013)
 - Statistical Inference: Non-random case-selection, so generalization is harder

Comparative Case Studies	Mixed Methods	Process Tracing
00000000000000	000	00000000000000000

► Case Selection:

- Case Selection:
- Two distinct considerations:

- ► Case Selection:
- Two distinct considerations:
 - 1. **Causal Inference** (internal validity) can our cases tell us with confidence that *D* causes *Y*?

Case Selection:

- Two distinct considerations:
 - 1. **Causal Inference** (internal validity) can our cases tell us with confidence that *D* causes *Y*?
 - 2. **Statistical Inference** (external validity) How much can we generalize about this causal effect to a broader population?

► Case Selection:

- Two distinct considerations:
 - 1. **Causal Inference** (internal validity) can our cases tell us with confidence that *D* causes *Y*?
 - 2. **Statistical Inference** (external validity) How much can we generalize about this causal effect to a broader population?
- Ideally we want both: Control and representative variation

Case Selection:

- Two distinct considerations:
 - 1. **Causal Inference** (internal validity) can our cases tell us with confidence that *D* causes *Y*?
 - 2. **Statistical Inference** (external validity) How much can we generalize about this causal effect to a broader population?
- Ideally we want both: Control and representative variation
 - Our goal is not to explain why outcome Y happened in one case, but why it happens generally

Comparative Case Studies	Mixed Methods	Process Tracing
000000000000000000000000000000000000000	000	0000000000000000

► Case Selection:

► Case Selection:

Random sampling is fine! It directly helps us generalize

Case Selection:

- ► Random sampling is fine! It directly helps us generalize
- And it helps us avoid researcher bias

► Case Selection:

- ► Random sampling is fine! It directly helps us generalize
- And it helps us avoid researcher bias
- But:

► Case Selection:

- ► Random sampling is fine! It directly helps us generalize
- And it helps us avoid researcher bias
- But:
 - Randomization does not guarantee balance on confounders in small samples

Case Selection:

- Random sampling is fine! It directly helps us generalize
- And it helps us avoid researcher bias
- ► But:
 - Randomization does not guarantee balance on confounders in small samples
 - Randomized sampling is not the same as randomized treatment
- More reliable to pick equal numbers of treated and control units, ensuring balance on key confounders - purposive sampling

Comparative Case Studies	Mixed Methods	Process Tracing
000000000000000000000000000000000000000	000	00000000000000000

- Can we really ignore the outcome variable??
 - ► **DO NOT** select cases by the value of the outcome (Geddes)

- **DO NOT** select cases by the value of the outcome (Geddes)
 - If we only study success cases, we don't know the outcome under control

- **DO NOT** select cases by the value of the outcome (Geddes)
 - If we only study success cases, we don't know the outcome under control
 - The 'treatment' may also have been present in the 'control' cases

- **DO NOT** select cases by the value of the outcome (Geddes)
 - If we only study success cases, we don't know the outcome under control
 - The 'treatment' may also have been present in the 'control' cases
 - We want to explain interesting things, so we often pick 'extreme' cases, but the extremeness might reflect confounders, not the treatment

- **DO NOT** select cases by the value of the outcome (Geddes)
 - If we only study success cases, we don't know the outcome under control
 - The 'treatment' may also have been present in the 'control' cases
 - We want to explain interesting things, so we often pick 'extreme' cases, but the extremeness might reflect confounders, not the treatment
- But: If we select cases explicitly for a range of values of the outcome, that's better

Comparative Case Studies	Mixed Methods	Process Tracing
000000000000000000000000000000000000000	000	000000000000000000000000000000000000000

► Generalizability:

Comparative Case Studies	Mixed Methods	Process Trac
0000000000000000	000	000000000

► Generalizability:

Depends on our cases being representative

Generalizability:

- Depends on our cases being representative
- If we want to compare men's and women's running speeds,
 DO NOT pick Usain Bolt and Florence Griffith-Joyner

Generalizability:

- Depends on our cases being representative
- If we want to compare men's and women's running speeds,
 DO NOT pick Usain Bolt and Florence Griffith-Joyner
- Pick units with 'median' values or a range of values on the confounding and outcome variables

Generalizability:

- Depends on our cases being representative
- If we want to compare men's and women's running speeds,
 DO NOT pick Usain Bolt and Florence Griffith-Joyner
- Pick units with 'median' values or a range of values on the confounding and outcome variables
- At the same time as balancing confounders hard!

Comparative Case Studies	Mixed Methods	Process Tracing
000000000000000	000	0000000000000000

Most similar cases: Same covariates, different treatment value

- Most similar cases: Same covariates, different treatment value
- BUT If there are many sets of 'most similar' paired cases, which should we pick?

- Most similar cases: Same covariates, different treatment value
- BUT If there are many sets of 'most similar' paired cases, which should we pick?
 - Typical cases: Most representative paired cases on covariates, eg. Levitsky and Way

- Most similar cases: Same covariates, different treatment value
- BUT If there are many sets of 'most similar' paired cases, which should we pick?
 - Typical cases: Most representative paired cases on covariates, eg. Levitsky and Way
 - Diverse cases: Covering all values of treatment and covariates, eg. Slater

- Most similar cases: Same covariates, different treatment value
- BUT If there are many sets of 'most similar' paired cases, which should we pick?
 - Typical cases: Most representative paired cases on covariates, eg. Levitsky and Way
 - Diverse cases: Covering all values of treatment and covariates, eg. Slater
 - Extreme cases: Highest and lowest values of treatment, eg. Lieberman

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	000000000000000000000000000000000000000

Methods for alternative objectives:
- Methods for alternative objectives:
 - Deviant cases: If you want to disprove a theory or generate a new hypothesis

- Methods for alternative objectives:
 - Deviant cases: If you want to disprove a theory or generate a new hypothesis
 - Most different cases: When searching for a hypothesis to explain Y

- Methods for alternative objectives:
 - Deviant cases: If you want to disprove a theory or generate a new hypothesis
 - Most different cases: When searching for a hypothesis to explain Y
 - Influential cases: How sensitive is our relationship to mismeasurement of a key case?

Section 2

How do we combine our earlier quantitative methods with comparative cases?

- How do we combine our earlier quantitative methods with comparative cases?
- Three forms of mixed methods:

- How do we combine our earlier quantitative methods with comparative cases?
- Three forms of mixed methods:
 - 1. Large-N measurement supports **case selection** for Small-N analysis (Seawright and Gerring)

- How do we combine our earlier quantitative methods with comparative cases?
- Three forms of mixed methods:
 - 1. Large-N measurement supports **case selection** for Small-N analysis (Seawright and Gerring)
 - 2. Comparative cases to identify explanation, then **tested for generalizability** in Large-N sample (Lieberman)

- How do we combine our earlier quantitative methods with comparative cases?
- Three forms of mixed methods:
 - 1. Large-N measurement supports **case selection** for Small-N analysis (Seawright and Gerring)
 - 2. Comparative cases to identify explanation, then **tested for generalizability** in Large-N sample (Lieberman)
 - Large-N analysis to show causal effect within-case, then generalized using comparative case studies (Ziblatt and Slater)

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	000000000000000000000000000000000000000

Strategies for increasing the number of observations:
1. Additional measurable implications of the causal theory

- 1. Additional measurable implications of the causal theory
- 2. Subnational units

- 1. Additional measurable implications of the causal theory
- 2. Subnational units
- 3. Time-series

- 1. Additional measurable implications of the causal theory
- 2. Subnational units
- 3. Time-series
- 4. Alternative mesaures

Section 3

Can we learn anything with a single case study?

- Can we learn anything with a single case study?
- Yes: Within-case analysis

- Can we learn anything with a single case study?
- Yes: Within-case analysis
- ► For testing **specific causal theories** *how* does *D* affect *Y*?

- Can we learn anything with a single case study?
- Yes: Within-case analysis
- ► For testing **specific causal theories** *how* does *D* affect *Y*?
- Only possible if we can turn our single case into multiple observations

- Can we learn anything with a single case study?
- Yes: Within-case analysis
- ► For testing **specific causal theories** *how* does *D* affect *Y*?
- Only possible if we can turn our single case into multiple observations
- Causal Process Observations:
 - Evidence must support or undermine a specific theory

- Can we learn anything with a single case study?
- Yes: Within-case analysis
- ► For testing **specific causal theories** how does D affect Y?
- Only possible if we can turn our single case into multiple observations
- Causal Process Observations:
 - Evidence must support or undermine a specific theory
 - What observable implications are there of theory A? How do they differ from the implications of theory B?

- Can we learn anything with a single case study?
- Yes: Within-case analysis
- ► For testing **specific causal theories** *how* does *D* affect *Y*?
- Only possible if we can turn our single case into multiple observations
- Causal Process Observations:
 - Evidence must support or undermine a specific theory
 - What observable implications are there of theory A? How do they differ from the implications of theory B?
 - Is the evidence consistent with theory A? Or inconsistent with theory B?

1. Identify all relevant theories to explain the outcome (treatment plus alternative theories)

- 1. Identify all relevant theories to explain the outcome (treatment plus alternative theories)
- 2. For each theory what would the case look like if the theory was true?

- 1. Identify all relevant theories to explain the outcome (treatment plus alternative theories)
- 2. For each theory what would the case look like if the theory was true?
- 3. Gather data from the case on each observable implication

- 1. Identify all relevant theories to explain the outcome (treatment plus alternative theories)
- 2. For each theory what would the case look like if the theory was true?
- 3. Gather data from the case on each observable implication
- 4. Compare the data to each theory

- 1. Identify all relevant theories to explain the outcome (treatment plus alternative theories)
- 2. For each theory what would the case look like if the theory was true?
- 3. Gather data from the case on each observable implication
- 4. Compare the data to each theory
- 5. Can we eliminate all other theories except our treatment?
 - Sherlock Holmes' Method of Elimination

Comparative Case Studies	Mixed Methods	Process Tracing
00000000000000	000	000000000000000000000000000000000000000

We know the value of treatment and outcome for our case and it fits our theory

Comparative Case Studies	Mixed Methods	Process Tracing
000000000000000	000	000000000000000000000000000000000000000

- We know the value of treatment and outcome for our case and it fits our theory
- But we don't have any counterfactual to compare against

- We know the value of treatment and outcome for our case and it fits our theory
- But we don't have any counterfactual to compare against
- The outcome could instead have been caused by a confounder

- One way to support our theory is to test the mechanisms along the causal path of treatment:
 - Evidence of M NOT occurring is proof Treatment did not have a causal effect
 - Evidence of M occurring is consistent with Treatment having a causal effect

000000000000000000000000000000000000000	Comparative Case Studies	Mixed Methods	Process Tracing
	0000000000000	000	000000000000000000000000000000000000000

- One way to support our theory is to test the mechanisms along the causal path of treatment:
 - Evidence of M NOT occurring is proof Treatment did not have a causal effect
 - Evidence of M occurring is consistent with Treatment having a causal effect
 - It could have been another confounder that also worked through that mechanism

0000000000000 000 0000000	Comparative Case Studies	Mixed Methods	Process Tracing
	00000000000000	000	000000000000000000000000000000000000000

- One way to support our theory is to test the mechanisms along the causal path of treatment:
 - Evidence of M NOT occurring is proof Treatment did not have a causal effect
 - Evidence of M occurring is consistent with Treatment having a causal effect
 - It could have been another confounder that also worked through that mechanism
- This is a 'hoop' test

00000000000000000000000000000000000000	Comparative Case Studies	Mixed Methods	Process Tracing
	0000000000000	000	000000000000000000000000000000000000000

- One way to support our theory is to test the mechanisms along the causal path of treatment:
 - Evidence of M NOT occurring is proof Treatment did not have a causal effect
 - Evidence of M occurring is consistent with Treatment having a causal effect
- If there are no other possible confounders consistent with this mechanism, this is a 'Smoking Gun' test

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	000000000000000

We can also test mechanisms on the causal path of confounders:

Comparative Case Studies	Mixed Methods	Process Tracing
000000000000000000000000000000000000000	000	000000000000000000000000000000000000000

- We can also test mechanisms on the causal path of confounders:
 - Evidence of Mechanism X NOT occurring can rule out this confounder, but there might still be others
| Comparative Case Studies | Mixed Methods | Process Tracing |
|--------------------------|---------------|------------------|
| 0000000000000 | 000 | 0000000000000000 |
| | | |

- We can also test mechanisms on the causal path of confounders:
 - Evidence of Mechanism X NOT occurring can rule out this confounder, but there might still be others
 - Evidence of Mechanism X occurring is consistent with Treatment having no effect, but not proof

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	0000000000000000

- We can also test mechanisms on the causal path of confounders:
 - Evidence of Mechanism X NOT occurring can rule out this confounder, but there might still be others
 - Evidence of Mechanism X occurring is consistent with Treatment having no effect, but not proof
- This is a 'straw in the wind' test

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	0000000000000000

Unusually, a mechanism might explicitly separate two theories:

Comparative Case Studies	Mixed Methods	Process Tracing
00000000000000	000	0000000000000000

- Unusually, a mechanism might explicitly separate two theories:
 - M = 0 if treatment is active

Comparative Case Studies	Mixed Methods	Process Tracing
00000000000000	000	0000000000000000

- Unusually, a mechanism might explicitly separate two theories:
 - M = 0 if treatment is active
 - M = 1 if the confounder is active

Comparative Case Studies	Mixed Methods	Process Tracing
00000000000000	000	0000000000000000

- Unusually, a mechanism might explicitly separate two theories:
 - M = 0 if treatment is active
 - M = 1 if the confounder is active
- This is a 'Doubly-Decisive' test

Comparative Case Studies	Mixed Methods	Process Tracing
000000000000000	000	000000000000000000000000000000000000000

Does Development cause Democracy?

Comparative Case Studies	Mixed Methods	Process Tracing
00000000000000	000	00000000000000000

- Does Development cause Democracy?
- We only have knowledge about South Korea: It got much richer between 1960 and 1987 when it became a democracy

- Does Development cause Democracy?
- We only have knowledge about South Korea: It got much richer between 1960 and 1987 when it became a democracy
- But did higher income cause democracy?

- Does Development cause Democracy?
- We only have knowledge about South Korea: It got much richer between 1960 and 1987 when it became a democracy
- But did higher income cause democracy?
- Theory: Higher incomes raise the demand for democracy, and diversify power away from the state

- Does Development cause Democracy?
- We only have knowledge about South Korea: It got much richer between 1960 and 1987 when it became a democracy
- But did higher income cause democracy?
- Theory: Higher incomes raise the demand for democracy, and diversify power away from the state
- If this were true we should see:
 - Opinion polls show increased support for democracy

- Does Development cause Democracy?
- We only have knowledge about South Korea: It got much richer between 1960 and 1987 when it became a democracy
- But did higher income cause democracy?
- Theory: Higher incomes raise the demand for democracy, and diversify power away from the state
- If this were true we should see:
 - Opinion polls show increased support for democracy
 - Street protests, especially among the new middle-class

- Does Development cause Democracy?
- We only have knowledge about South Korea: It got much richer between 1960 and 1987 when it became a democracy
- But did higher income cause democracy?
- Theory: Higher incomes raise the demand for democracy, and diversify power away from the state
- If this were true we should see:
 - Opinion polls show increased support for democracy
 - Street protests, especially among the new middle-class
 - Private sector and civil society lobbying for democracy

- Does Development cause Democracy?
- We only have knowledge about South Korea: It got much richer between 1960 and 1987 when it became a democracy
- But did higher income cause democracy?
- Theory: Higher incomes raise the demand for democracy, and diversify power away from the state
- If this were true we should see:
 - Opinion polls show increased support for democracy
 - Street protests, especially among the new middle-class
 - Private sector and civil society lobbying for democracy

Alternative Theory: Or was it American pressure?

- Does Development cause Democracy?
- We only have knowledge about South Korea: It got much richer between 1960 and 1987 when it became a democracy
- But did higher income cause democracy?
- Theory: Higher incomes raise the demand for democracy, and diversify power away from the state
- If this were true we should see:
 - Opinion polls show increased support for democracy
 - Street protests, especially among the new middle-class
 - Private sector and civil society lobbying for democracy

- Alternative Theory: Or was it American pressure?
- South Korean elites faced costs to continuing dictatorship, and choose to democratize

- Does Development cause Democracy?
- We only have knowledge about South Korea: It got much richer between 1960 and 1987 when it became a democracy
- But did higher income cause democracy?
- Theory: Higher incomes raise the demand for democracy, and diversify power away from the state
- If this were true we should see:
 - Opinion polls show increased support for democracy
 - Street protests, especially among the new middle-class
 - Private sector and civil society lobbying for democracy

- Alternative Theory: Or was it American pressure?
- South Korean elites faced costs to continuing dictatorship, and choose to democratize
- If this were true we should see:
 - Discussions (public or private) between US and Korean elites

- Does Development cause Democracy?
- We only have knowledge about South Korea: It got much richer between 1960 and 1987 when it became a democracy
- But did higher income cause democracy?
- Theory: Higher incomes raise the demand for democracy, and diversify power away from the state
- If this were true we should see:
 - Opinion polls show increased support for democracy
 - Street protests, especially among the new middle-class
 - Private sector and civil society lobbying for democracy

- Alternative Theory: Or was it American pressure?
- South Korean elites faced costs to continuing dictatorship, and choose to democratize
- If this were true we should see:
 - Discussions (public or private) between US and Korean elites
 - Korean vulnerability to US pressure

- Does Development cause Democracy?
- We only have knowledge about South Korea: It got much richer between 1960 and 1987 when it became a democracy
- But did higher income cause democracy?
- Theory: Higher incomes raise the demand for democracy, and diversify power away from the state
- If this were true we should see:
 - Opinion polls show increased support for democracy
 - Street protests, especially among the new middle-class
 - Private sector and civil society lobbying for democracy

- Alternative Theory: Or was it American pressure?
- South Korean elites faced costs to continuing dictatorship, and choose to democratize
- If this were true we should see:
 - Discussions (public or private) between US and Korean elites
 - Korean vulnerability to US pressure
 - Elites choosing the time and form of democratization

Comparative Case Studies	Mixed Methods	Process Tracing
0000000000000	000	000000000000000000000000000000000000000

► What does the evidence show?

Mixed Methods

Process Tracing

What does the evidence show?

▶ Brady (2010)

- Brady (2010)
- Difference-in-differences evidence that the early announcement of a Democrat victory in Florida led to reduced Republican voting

- Brady (2010)
- Difference-in-differences evidence that the early announcement of a Democrat victory in Florida led to reduced Republican voting
- Estimated 10,000 lost Republican votes

- Brady (2010)
- Difference-in-differences evidence that the early announcement of a Democrat victory in Florida led to reduced Republican voting
- Estimated 10,000 lost Republican votes
- The only way the causal effect is true is if there is a causal mechanism connecting the treatment to the outcome:

- Brady (2010)
- Difference-in-differences evidence that the early announcement of a Democrat victory in Florida led to reduced Republican voting
- Estimated 10,000 lost Republican votes
- The only way the causal effect is true is if there is a causal mechanism connecting the treatment to the outcome:
 - ► How long was left for the election after treatment?:

- Brady (2010)
- Difference-in-differences evidence that the early announcement of a Democrat victory in Florida led to reduced Republican voting
- Estimated 10,000 lost Republican votes
- The only way the causal effect is true is if there is a causal mechanism connecting the treatment to the outcome:
 - How long was left for the election after treatment?: 10 minutes

- Brady (2010)
- Difference-in-differences evidence that the early announcement of a Democrat victory in Florida led to reduced Republican voting
- Estimated 10,000 lost Republican votes
- The only way the causal effect is true is if there is a causal mechanism connecting the treatment to the outcome:
 - How long was left for the election after treatment?: 10 minutes
 - How many voters were **potentially influenced**:

- Brady (2010)
- Difference-in-differences evidence that the early announcement of a Democrat victory in Florida led to reduced Republican voting
- Estimated 10,000 lost Republican votes
- The only way the causal effect is true is if there is a causal mechanism connecting the treatment to the outcome:
 - How long was left for the election after treatment?: 10 minutes
 - How many voters were potentially influenced: 4,200 voters

- Brady (2010)
- Difference-in-differences evidence that the early announcement of a Democrat victory in Florida led to reduced Republican voting
- Estimated 10,000 lost Republican votes
- The only way the causal effect is true is if there is a causal mechanism connecting the treatment to the outcome:
 - How long was left for the election after treatment?: 10 minutes
 - How many voters were potentially influenced: 4,200 voters
 - How many voters were probably treated:

- Brady (2010)
- Difference-in-differences evidence that the early announcement of a Democrat victory in Florida led to reduced Republican voting
- Estimated 10,000 lost Republican votes
- The only way the causal effect is true is if there is a causal mechanism connecting the treatment to the outcome:
 - How long was left for the election after treatment?: 10 minutes
 - How many voters were potentially influenced: 4,200 voters
 - How many voters were probably treated: 560 voters

- Brady (2010)
- Difference-in-differences evidence that the early announcement of a Democrat victory in Florida led to reduced Republican voting
- Estimated 10,000 lost Republican votes
- The only way the causal effect is true is if there is a causal mechanism connecting the treatment to the outcome:
 - How long was left for the election after treatment?: 10 minutes
 - How many voters were potentially influenced: 4,200 voters
 - How many voters were probably treated: 560 voters
 - How many voters likely complied with treatment:

- Brady (2010)
- Difference-in-differences evidence that the early announcement of a Democrat victory in Florida led to reduced Republican voting
- Estimated 10,000 lost Republican votes
- The only way the causal effect is true is if there is a causal mechanism connecting the treatment to the outcome:
 - How long was left for the election after treatment?: 10 minutes
 - How many voters were potentially influenced: 4,200 voters
 - How many voters were probably treated: 560 voters
 - How many voters likely complied with treatment: 56 voters

- Brady (2010)
- Difference-in-differences evidence that the early announcement of a Democrat victory in Florida led to reduced Republican voting
- Estimated 10,000 lost Republican votes
- The only way the causal effect is true is if there is a causal mechanism connecting the treatment to the outcome:
 - How long was left for the election after treatment?: 10 minutes
 - How many voters were potentially influenced: 4,200 voters
 - How many voters were probably treated: 560 voters
 - How many voters likely complied with treatment: 56 voters < 10,000</p>

What happened to counterfactuals here?

- What happened to counterfactuals here?
- We still don't know what would have happened if our case had not received the treatment (eg. been low income)

- What happened to counterfactuals here?
- We still don't know what would have happened if our case had not received the treatment (eg. been low income)
- We're substituting assumptions/theory for a counterfactual
- What happened to counterfactuals here?
- We still don't know what would have happened if our case had not received the treatment (eg. been low income)
- We're substituting assumptions/theory for a counterfactual
 - We 'assume' that the only way our treatment could work is through the mechanism we specify

- What happened to counterfactuals here?
- We still don't know what would have happened if our case had not received the treatment (eg. been low income)
- We're substituting assumptions/theory for a counterfactual
 - We 'assume' that the only way our treatment could work is through the mechanism we specify
 - And we assume the only way confounding works is through the mechanism we specify
- So everything depends on how confident we are in our theory/assumptions about mechanisms

► In practice, process tracing is made harder by:

► In practice, process tracing is made harder by:

Imprecise, or non-discriminating theory

► In practice, process tracing is made harder by:

- Imprecise, or non-discriminating theory
- Imperfect measurement and data availability

► In practice, process tracing is made harder by:

- Imprecise, or non-discriminating theory
- Imperfect measurement and data availability
- Subjective judgment on the weight of each piece of evidence

What are we really learning from process tracing?

- What are we really learning from process tracing?
- That a treatment caused an outcome in our specific case

- What are we really learning from process tracing?
- That a treatment caused an outcome in our specific case
- But how representative is our case?

- What are we really learning from process tracing?
- That a treatment caused an outcome in our specific case
- But how representative is our case?
- Will the same causal effect occur in other contexts?