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Review Frontiers

Classification of Research Designs

É Correlation is not causation
É And regresssion is just fancy correlation

É So how do we provide evidence of causation?
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Classification of Research Designs

Independence
of Treatment
Assignment

Researcher Con-
trols Treatment
Assignment?

Controlled
Experiments

Field Experiments Ø Ø

Survey and Lab Experiments Ø Ø

Natural
Experiments

Natural Experiments Ø

Instrumental Variables Ø

Discontinuities Ø

Observational
Studies

Difference-in-Differences

Controlling for Confounding

Matching

Comparative Cases and Process
Tracing
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Definitions

1. Potential Outcomes

2. Treatment Assignment
Mechanism

3. Independence of Potential
Outcomes from Treatment

4. Average Treatment Effect
5. Local Average Treatment

Effect
6. Non-compliance

7. Hawthorne Effects

8. Time-invariant confounder

9. Exclusion Restriction

10. Back-door path

11. SUTVA

12. Overlap in sample
characteristics
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Choosing a Method

What is the Treatment Assignment Mechanism?

Randomized (Experimental) As-If Random (at least in part) Observational

Y ~ D RDD
(Y ~ R + D)

IV
(D ~ Z; Y ~ D_hat)

Diff-in-Diff
(Y ~ D + T + T:D) Matching

Controlling
(Y ~ D + X_1 + X_2)
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Choosing a Method

É How do we decide which causal inference strategy to use?

1. What is the treatment assignment mechanism?
É Randomized: field experiment
É As-if random: natural experiment
É Messy: Observational study

2. Where is the (as-if random) variation in treatment statuss?
É At discontinuous threshold: RDD
É Before treatment: IV
É Across time and units: Diff-in-diff
É Across units: Matching/Controls/Comparative case studies
É None: Process Tracing

3. How many units can we get accurate measures for?
É One: Process tracing
É Small-N: Comparative Case Studies
É Large-N: Controls/Matching

4. Are the assumptions met?
É Parallel trends, no sorting, balance...
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Choosing a Method

1. Has experience with Obamacare increased electoral
turnout?

É Difference-in-differences between states that did/did not
expand Obamacare

2. Can playing a video game as a Roma character reduce
anti-Roma prejudice in Hungary?
É Online survey experiment

3. Does peasant revolt in 19th century Russia lead to less
representative local government?
É Instrument peasant revolt with serfdom

4. Do women govern differently from men?
É Regression discontinuity in close elections in Brazil

5. Do US political contact campaigns change voters’ choices?
É Field experiment
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The Role of Theory

É Political Scientists test theories, not interventions

É To avoid data mining and multiple testing: We have to test
plausible, relevant and falsifiable theories
É To tell us which experiments and research designs to run
É To justify assumptions (exclusion restriction, confounders)
É To help us interpret what we have learned
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The Role of Qualitative Evidence

É Vital for ’finding’ natural experiments

É To validate assumptions (no sorting, randomization
worked, SUTVA)
É To understand specific analysis requirements, eg.

non-compliance, clustering
É For Process Tracing: Causal Process Observations
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Comparing Methodologies
É Different methodologies measure different treatment

effects for different populations

É Often a trade-off between Bias and Generalizability

É Regression
Discontinuity:

É Low bias, Low
generalizability

É LATE, estimated for a
population where
discontinuities were
available

É Regression with
Controls:
É High bias, High

generalizability
É ATE, estimated for the

whole population we have
data for
É But: Aronow and Samii

(2016) - simple regression
also implicitly weights your
sample, so it’s not as
generalizable as you think

É We can do both and compare!
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Limitations of Causal Methodologies

É Sure, you have shown that D affects Y, but how?? The
connection is still a black box!

É Causal effects are probably highly heterogeneous - do we
really care about the ATE (the average effect)?
É They only tell us about ’unusual’ parts of the population (eg.

RDD, Field Experiment)
É Even if variable X has a causal effect, how much of the real

world does it explain?
É Sometimes it’s just not possible to show causation. That’s

OK!
É We just need to recognize the limits of the evidence we have
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Section 2

Frontiers
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Review Frontiers

Frontiers of Strengthening Causal Arguments

É Writing a paper means sustaining a convincing argument

É Choosing and implementing an appropriate method is only
the first step
É We also need to show that our estimate is reliable and not a

’chance’ finding
É More importantly, that it is evidence in support of a specific

theory
É You don’t want to publish a paper that someone contradicts

next week!
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Sensitivity Analysis

É An alternative is to ask - quantitatively - how much do our
results change when we alter the model or its assumptions?

É One example for observational studies:
É How much larger would unmeasured confounders have to

be than measured confounders to remove the entire
estimated treatment effect? (Altonji et al 2005)

É Eg. Nunn and Wantchekon (2011) argue that for
unmeasured confounders to explain their estimated effect
of the slave trade on trust, they would have to be 3 - 11
times larger than measured confounders
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É We have an average treatment effect

É But theory may predict different groups are affected to
different degrees
É We can test for heterogeneous effects: Conditional

Average Treatment Effects (CATE)
É Y ∼ β1D + β2X + β3D ∗ X + ε
É X MUST be a pre-treatment covariate we are testing for

heterogeneous effects on
É CRUCIAL: Our covariate is not randomly assigned, so the

interpretation of heterogeneous effects is not causal, just
descriptive
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Heterogeneity Tests

É Ex. Ferraz and Finan (2008)
É Audits reduce corruption, they argue due to electoral

accountability

É The effects should therefore be stronger where:
É More people know about the audits (local radio): It is!
É And for first-term Mayors with re-election incentives. It is!

É Are there other theories consistent with all of this evidence?
É Note this does not mean that being a first-term mayor causes

audits to be more effective
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Heterogeneity Tests

É But what if we look for heterogeneous effects on 20
variables?

É And then construct a theory to ’explain’ the variables that
show differential effects

É Theory first! Avoid ex post construction of theory and
data-mining
É At least correct p-values for multiple testing
É More details on this egap page
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Placebo Tests

É How likely is it that our treatment effect is just a product of
messy data?

É Normally we test for a treatment effect where we expect
one
É But we can also test for a treatment effect where we don’t

expect one
É Evidence of no treatment effect supports our interpretation
É Evidence of a ’surprising’ treatment effect suggests messy

data, or an incomplete theory
É Common for regression discontinuities (alternative

thresholds) and difference-in-differences (alternative times
of treatment)
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Generalizability

É How ’weird’ are the units we are measuring the Local
Average Treatment Effect for?

É We can try to describe the characteristics of these compliers
É We don’t know if any single individual is a complier
É But we can describe them on average
É The first stage of the IV regression tells us about compliance

with treatment
É Relative likelihood that a complier has covariate X equals:

Pr(Comper|X = 1)

Pr(Comper)
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Generalizability

É Replication is crucial to our ability to generalize

É Replication in different samples from the same population
É Replication in different populations
É Replication of different treatment implementations

É This is how we accumulate knowledge
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Mechanisms

É To avoid the critique that experiments are a black box, and
to support specific theories, we need to start testing causal
mechanisms

É We have already seen how to use process tracing to ’test’
specific mechanisms in individual cases
É Quantitative tests also exist, exploiting ’post-treatment bias’
É But require additional assumptions: Sequential

ignorability
É That the treatment is independent of potential outcomes
É AND that the mediator (mechanism) is independent of

potential outcomes conditional on treatment
É Hard!
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Mechanisms

É One practical approach is to run two regressions that
recreates our DAG:

M = α1 + β1D + ε1

Y = α3 + β3D + β4M + ε3

É This implies:
Y = α3 + D(β3 + β4 ∗ β1) + (α1 + ε1)∗ β4 + ε3

É Direct effect of treatment = β3
É Indirect effect of treatment = β4 ∗ β1
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Pre-Analysis Plans

É There are a lot of tests and specifications we can run!

É How do we know what is ex post data-mining and what is a
real test of a specific theory?
É We can constrain ourselves
É Submit a Pre-Analysis Plan, eg. to egap or see BITSS
É Document the theory and hypotheses you’re using (to avoid

fitting an explanation to the data)
É Document the regressions you will run (to avoid

data-mining)
É If you need to change later, no problem! We just need to

justify why
É It’s transparent how far away we have come from the

original test of theory
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data-mining)
É If you need to change later, no problem! We just need to

justify why
É It’s transparent how far away we have come from the

original test of theory
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