000000000000000000000000000000000000000	0000000

FLS 6441 - Methods III: Explanation and Causation Week 3 - Field Experiments

Jonathan Phillips

March 2020

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

- The rest of the course is mostly about:
 - Design-Based Solutions to the Fundamental Problem of Causal Inference:

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

- The rest of the course is mostly about:
 - Design-Based Solutions to the Fundamental Problem of Causal Inference:
 - Finding treatment assignment mechanisms that avoid biases and provide plausible counterfactuals

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

- The rest of the course is mostly about:
 - Design-Based Solutions to the Fundamental Problem of Causal Inference:
 - Finding treatment assignment mechanisms that avoid biases and provide plausible counterfactuals
 - ► How much can we learn with better research design?

- The rest of the course is mostly about:
 - Design-Based Solutions to the Fundamental Problem of Causal Inference:
 - Finding treatment assignment mechanisms that avoid biases and provide plausible counterfactuals
 - How much can we learn with better research design?
 - Model-Based Solutions: Not so much.

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

	Independence of Treatment Assignment?	Researcher Controls Treatment Assignment?
Controlled Experiments	\checkmark	\checkmark
Natural Ex- periments	\checkmark	
Observational Studies		

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

		Independence of Treatment Assignment	Researcher Con- trols Treatment Assignment?
Controlled	Field Experiments	√	√
Experiments	Survey and Lab Experiments	√	√
Natural	Randomized Natural Experi- ments	V	
Experiments	Instrumental Variables	√	
	Discontinuities	√	
	Difference-in-Differences		
Observational Contro Studies Matchi	Controlling for Confounding		
	Matching		
	Comparative Cases and Process Tracing		

Independence	Analysis	Assumptions	Implementation	Critiquing
●00000000000	000000000	00000000	00000	0000000

Section 1

Independence

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

Last week, we identified why it's hard to estimate causal effects:

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- Last week, we identified why it's hard to estimate causal effects:
- The Treatment Assignment Mechanism depends on Potential Outcomes

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- Last week, we identified why it's hard to estimate causal effects:
- The Treatment Assignment Mechanism depends on Potential Outcomes
- So estimates of the ATE are biased

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- Last week, we identified why it's hard to estimate causal effects:
- The Treatment Assignment Mechanism depends on Potential Outcomes
- So estimates of the ATE are biased
- The solution?

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- Last week, we identified why it's hard to estimate causal effects:
- The Treatment Assignment Mechanism depends on Potential Outcomes
- So estimates of the ATE are biased
- The solution?
- Treatment Assignment Mechanisms that ARE independent of potential outcomes

Independence	Analysis	Assumptions	Implementation	Critiquing
0000000000000	000000000	00000000	00000	0000000

- Why does Independence of Treatment Assignment help us achieve causal inference?
 - ► We want to estimate:

$$E(Y_1) - E(Y_0) \tag{1}$$

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- Why does Independence of Treatment Assignment help us achieve causal inference?
 - We want to estimate:

$$E(Y_1) - E(Y_0) \tag{1}$$

Our data provides:

$$E(Y_1|D=1)$$
, $E(Y_0|D=0)$ (2)

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- Why does Independence of Treatment Assignment help us achieve causal inference?
 - We want to estimate:

$$E(Y_1) - E(Y_0) \tag{1}$$

Our data provides:

$$E(Y_1|D=1)$$
, $E(Y_0|D=0)$ (2)

• With independence, $Y_1, Y_0 \perp D$:

$$E(Y_1|D=1) = E(Y_1)$$
 (3)

$$E(Y_0|D=0) = E(Y_0)$$
 (4)

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- Why does Independence of Treatment Assignment help us achieve causal inference?
 - We want to estimate:

$$E(Y_1) - E(Y_0) \tag{1}$$

Our data provides:

$$E(Y_1|D=1)$$
, $E(Y_0|D=0)$ (2)

• With independence, $Y_1, Y_0 \perp D$:

$$E(Y_1|D=1) = E(Y_1)$$
 (3)

$$E(Y_0|D=0) = E(Y_0)$$
 (4)

$$E(Y_1|D=1) - E(Y_0|D=0) = E(Y_1) - E(Y_0)$$

(5)

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- Why does Independence of Treatment Assignment help us achieve causal inference?
 - We want to estimate:

$$E(Y_1) - E(Y_0) \tag{1}$$

Our data provides:

$$E(Y_1|D=1)$$
, $E(Y_0|D=0)$ (2)

• With independence, $Y_1, Y_0 \perp D$:

$$E(Y_1|D=1) = E(Y_1)$$
 (3)

$$E(Y_0|D=0) = E(Y_0)$$
(4)

$$E(Y_1|D=1) - E(Y_0|D=0) = E(Y_1) - E(Y_0)$$
(5)

Potential outcomes in the treatment and control groups are now unbiased and representative of all the units 7/48

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing
	000000000	00000000	00000	0000000

What is the treatment assignment mechanism under randomization?

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing
				0000000

- What is the treatment assignment mechanism under randomization?
 - ► By definition it has nothing to do with potential outcomes!

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- What is the treatment assignment mechanism under randomization?
 - ► By definition it has nothing to do with potential outcomes!
 - So we get a representative sample of Y_0 and Y_1

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- What is the treatment assignment mechanism under randomization?
 - ► By definition it has nothing to do with potential outcomes!
 - So we get a representative sample of Y₀ and Y₁
 - Every unit has exactly the same probability of treatment

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing
				(

- What is the treatment assignment mechanism under randomization?
 - ► By definition it has nothing to do with potential outcomes!
 - So we get a representative sample of Y₀ and Y₁
 - Every unit has **exactly the same** probability of treatment
 - Potential outcomes are 'Completely Missing at Random'

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing
				(

- What is the treatment assignment mechanism under randomization?
 - ► By definition it has nothing to do with potential outcomes!
 - So we get a representative sample of Y₀ and Y₁
 - Every unit has exactly the same probability of treatment
 - Potential outcomes are 'Completely Missing at Random'
 - No omitted variable bias is possible

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing
				,

- What is the treatment assignment mechanism under randomization?
 - By definition it has nothing to do with potential outcomes!
 - So we get a representative sample of Y₀ and Y₁
 - Every unit has **exactly the same** probability of treatment
 - Potential outcomes are 'Completely Missing at Random'
 - No omitted variable bias is possible
 - No self-selection is possible

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing
				,

- What is the treatment assignment mechanism under randomization?
 - By definition it has nothing to do with potential outcomes!
 - So we get a representative sample of Y₀ and Y₁
 - Every unit has exactly the same probability of treatment
 - Potential outcomes are 'Completely Missing at Random'
 - No omitted variable bias is possible
 - No self-selection is possible
 - No reverse causation is possible

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

► This is the **entire** causal diagram:

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

► This is the **entire** causal diagram:

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

Why does randomization remove selection bias?

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- Why does randomization remove selection bias?
- Assume: $Y_{1i} = Y_{0i} + \alpha$, where α is the real constant treatment effect

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- Why does randomization remove selection bias?
- Assume: $Y_{1i} = Y_{0i} + \alpha$, where α is the real constant treatment effect

 $A\hat{T}E = E(Y_1|D=1) - E(Y_0|D=0)$

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- Why does randomization remove selection bias?
- Assume: $Y_{1i} = Y_{0i} + \alpha$, where α is the real constant treatment effect

 $A\hat{T}E = E(Y_1|D = 1) - E(Y_0|D = 0)$

$$A\hat{T}E = E(Y_0 + \alpha | D = 1) - E(Y_0 | D = 0)$$

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- Why does randomization remove selection bias?
- Assume: $Y_{1i} = Y_{0i} + \alpha$, where α is the real constant treatment effect

$$A\hat{T}E = E(Y_1|D=1) - E(Y_0|D=0)$$

$$A\hat{T}E = E(Y_0 + \alpha | D = 1) - E(Y_0 | D = 0)$$

$$A\hat{T}E = \underbrace{\alpha}_{\text{Real ATE}} + \underbrace{E(Y_0|D=1) - E(Y_0|D=0)}_{\text{Bias}}$$

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- Why does randomization remove selection bias?
- Assume: $Y_{1i} = Y_{0i} + \alpha$, where α is the real constant treatment effect

 $A\hat{T}E = E(Y_1|D = 1) - E(Y_0|D = 0)$

$$A\hat{T}E = E(Y_0 + \alpha | D = 1) - E(Y_0 | D = 0)$$

$$A\hat{T}E = \underbrace{\alpha}_{\text{Real ATE}} + \underbrace{E(Y_0|D=1) - E(Y_0|D=0)}_{\text{Bias}}$$

► Now, use the Independence of Treatment Assignment: $E(Y_0|D=1) = E(Y_0|D=0)$

Independence A	Analysis	Assumptions	Implementation	Critiquing
000000000000000000000000000000000000000	000000000	00000000	00000	0000000

- Why does randomization remove selection bias?
- Assume: $Y_{1i} = Y_{0i} + \alpha$, where α is the real constant treatment effect

$$A\hat{T}E = E(Y_1|D=1) - E(Y_0|D=0)$$

$$A\hat{T}E = E(Y_0 + \alpha | D = 1) - E(Y_0 | D = 0)$$

$$A\hat{T}E = \underbrace{\alpha}_{\text{Real ATE}} + \underbrace{E(Y_0|D=1) - E(Y_0|D=0)}_{\text{Bias}}$$

► Now, use the Independence of Treatment Assignment: $E(Y_0|D=1) = E(Y_0|D=0)$

$$A\hat{T}E = \underline{\alpha}_{\text{Real ATE}}$$

Independence A	Analysis .	Assumptions	Implementation	Critiquing
000000000000000000000000000000000000000	000000000	00000000	00000	0000000

- Why does randomization remove selection bias?
- Assume: $Y_{1i} = Y_{0i} + \alpha$, where α is the real constant treatment effect

$$A\hat{T}E = E(Y_1|D=1) - E(Y_0|D=0)$$

$$A\hat{T}E = E(Y_0 + \alpha | D = 1) - E(Y_0 | D = 0)$$

$$A\hat{T}E = \underbrace{\alpha}_{\text{Real ATE}} + \underbrace{E(Y_0|D=1) - E(Y_0|D=0)}_{\text{Bias}}$$

► Now, use the Independence of Treatment Assignment: $E(Y_0|D=1) = E(Y_0|D=0)$

This works for observable and unobservable influences
Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

But this logic works only based on expectations (averages)

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- But this logic works only based on expectations (averages)
 - On average, potential outcomes will be balanced

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- But this logic works only based on expectations (averages)
 - On average, potential outcomes will be balanced
 - That's more likely in larger samples

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- But this logic works only based on expectations (averages)
 - On average, potential outcomes will be balanced
 - That's more likely in larger samples
 - Less likely in small samples; by chance, potential outcomes may be biased

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- But this logic works only based on expectations (averages)
 - On average, potential outcomes will be balanced
 - That's more likely in larger samples
 - Less likely in small samples; by chance, potential outcomes may be biased
 - ► We have no way of *verifying* if potential outcomes are biased

Balance in Randomized Experiments

 Balance on potential outcomes is unlikely in small samples

12/48

Potential Outcome (v0) Value

Balance in Randomized Experiments

 Balance on potential outcomes is unlikely in small samples

 But the Law of Large Numbers helps us in large samples

15/48

Potential Outcome (v0) Value

16/48

Potential Outcome (v0) Value

0.00

-5

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

Section 2

Analysis

Independence	Analysis oeooooooo	Assumptions	Implementation	Critiquing

$$A\hat{T}E = E(Y_1|D=1) - E(Y_0|D=0)$$
(6)
= E(Y_1) - E(Y_0) (7)
= Real ATE (8)

Independence	Analysis	Assumptions	Implementation	Critiquing

► If treatment is random we know that:

$$A\hat{T}E = E(Y_1|D=1) - E(Y_0|D=0)$$
(6)
= E(Y_1) - E(Y_0) (7)
= Real ATE (8)

• What is $E(Y_1|D=1)$?

Independence	Analysis	Assumptions	Implementation	Critiquing

$$A\hat{T}E = E(Y_1|D=1) - E(Y_0|D=0)$$
(6)
= E(Y_1) - E(Y_0) (7)
= Real ATE (8)

- What is $E(Y_1|D=1)$?
- What is $E(Y_0|D=0)$?

Independence Analysis Assumptions Implementation Critic 000000000000 000000000 00000000 00000 00000 00000	Assumptions Implementation Critiquing
---	---------------------------------------

$$A\hat{T}E = E(Y_1|D=1) - E(Y_0|D=0)$$
(6)
= E(Y_1) - E(Y_0) (7)
= Real ATE (8)

- What is $E(Y_1|D=1)$?
- What is $E(Y_0|D=0)$?
- ► This is easy!

Independence	Analysis	Assumptions	Implementation	Critiquing

$$A\hat{T}E = E(Y_1|D=1) - E(Y_0|D=0)$$
(6)
= $E(Y_1) - E(Y_0)$ (7)
= Real ATE (8)

- What is $E(Y_1|D=1)$?
- What is $E(Y_0|D=0)$?
- ► This is easy!
- Just the difference in outcome means between treatment and control units

Independence	Analysis	Assumptions	Implementation	Critiquing

$$A\hat{T}E = E(Y_1|D=1) - E(Y_0|D=0)$$
(6)
= E(Y_1) - E(Y_0) (7)
= Pool ATE (8)

- What is $E(Y_1|D=1)$?
- What is $E(Y_0|D=0)$?
- This is easy!
- Just the difference in outcome means between treatment and control units
 - And a simple T-test for statistical significance

Independence	Analysis	Assumptions	Implementation 00000	Critiquing
				(

$$A\hat{T}E = E(Y_1|D=1) - E(Y_0|D=0)$$
(6)
= E(Y_1) - E(Y_0) (7)
Decidation (8)

- What is $E(Y_1|D=1)$?
- What is $E(Y_0|D=0)$?
- ► This is easy!
- Just the difference in outcome means between treatment and control units
 - And a simple T-test for statistical significance
 - NO modelling assumptions ("non-parametric")

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	00000000	00000000	00000	0000000

Simple Regression = Difference-in-means T-test

0000000 00000000 00000000 00000000 00000	Independence	Analysis	Assumptions	Implementation	Critiquing
--	--------------	----------	-------------	----------------	------------

- ► Simple Regression = Difference-in-means T-test
- ► By definition:

$$Y_i^{obs} = Y_{0i}(1 - D_i) + Y_{1i}D_i$$

$$Y_i^{obs} = Y_{0i} + (Y_{1i} - Y_{0i})D_i$$

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- Simple Regression = Difference-in-means T-test
- ► By definition:

$$Y_i^{obs} = Y_{0i}(1 - D_i) + Y_{1i}D_i$$

$$Y_i^{obs} = Y_{0i} + (Y_{1i} - Y_{0i})D_i$$

We can estimate:

$$Y_i^{obs} = \alpha + \beta D_i + \epsilon_i$$

Independence Ar	nalysis	Assumptions	Implementation	Critiquing
000000000000000000000000000000000000000	00000000	00000000	00000	0000000

- Simple Regression = Difference-in-means T-test
- ► By definition:

$$Y_i^{obs} = Y_{0i}(1 - D_i) + Y_{1i}D_i$$

$$Y_i^{obs} = Y_{0i} + (Y_{1i} - Y_{0i})D_i$$

We can estimate:

$$Y_i^{obs} = \alpha + \beta D_i + \epsilon_i$$

So:

$$\hat{\beta} = E(Y_{1i} - Y_{0i})$$

- Simple Regression is identical to a Difference-in-means T-test
- T-test Results:

	estimate	statistic	p.value
1	0.27065	2.69475	0.00706

- Simple Regression is identical to a Difference-in-means T-test
- T-test Results:

	estimate	statistic	p.value
1	0.27065	2.69475	0.00706

• Regression Results ($Y_i = \alpha + \beta D_i + \epsilon_i$):

	term	estimate	std.error	statistic	p.value
1	(Intercept)	0.03459	0.07110	0.48647	0.62664
2	treatment	0.27065	0.10044	2.69472	0.00706

Independence	Analysis	Assumptions	Implementation	Critiquing

The results from one experiment are not perfect

000000000000000000000000000000000000000	Independence	Analysis	Assumptions	Implementation	Critiquing
---	--------------	----------	-------------	----------------	------------

- The results from one experiment are not perfect
- Estimated treatment effects are still probabilistic (random variables) so we may get the wrong answer by chance

Independence	Analysis	Assumptions	Implementation	Critiquing

- The results from one experiment are not perfect
- Estimated treatment effects are still probabilistic (random variables) so we may get the wrong answer by chance
- In repeated experiments, 95% of confidence intervals will cross the true treatment effect

Independence	Analysis	Assumptions	Implementation	Critiquing

- The results from one experiment are not perfect
- Estimated treatment effects are still probabilistic (random variables) so we may get the wrong answer by chance
- In repeated experiments, 95% of confidence intervals will cross the true treatment effect
- Try repeated experiments in an App

effects are still *probabilistic* (random variables) so we may get the wrong answer by chance

- In repeated experiments, 95% of confidence intervals will cross the true treatment effect
- Try repeated experiments in an App

Independence	Analysis	Assumptions	Implementation 00000	Critiquing

Clustered sampling: To reduce data collection costs

Independence	Analysis	Assumptions	Implementation	Critiquing

- Clustered sampling: To reduce data collection costs
- Clustered treatment: To reduce implementation costs, or to test specific theories

Independence	Analysis	Assumptions	Implementation	Critiquing

- Clustered sampling: To reduce data collection costs
- Clustered treatment: To reduce implementation costs, or to test specific theories
 - Eg. Holding Town Hall meetings does not make sense at the individual level

Independence	Analysis 0000000000	Assumptions	Implementation	Critiquing

- Clustered sampling: To reduce data collection costs
- Clustered treatment: To reduce implementation costs, or to test specific theories
 - Eg. Holding Town Hall meetings does not make sense at the individual level
- If treatment (or sampling) are clustered, we will have dependencies in our errors - closer people are more similar

Independence	Analysis 0000000000	Assumptions	Implementation	Critiquing

- Clustered sampling: To reduce data collection costs
- Clustered treatment: To reduce implementation costs, or to test specific theories
 - Eg. Holding Town Hall meetings does not make sense at the individual level
- If treatment (or sampling) are clustered, we will have dependencies in our errors - closer people are more similar
- So standard errors must be clustered at the level of treatment/sampling (eg. villages)
| Independence | Analysis | Assumptions | Implementation | Critiquing |
|--------------|----------|-------------|----------------|------------|
| | | | | |
| | | | | |

Clustered Treatments

- Clustered sampling: To reduce data collection costs
- Clustered treatment: To reduce implementation costs, or to test specific theories
 - Eg. Holding Town Hall meetings does not make sense at the individual level
- If treatment (or sampling) are clustered, we will have dependencies in our errors - closer people are more similar
- So standard errors must be clustered at the level of treatment/sampling (eg. villages)
- In general, causal inference is more efficient with more higher-level units (more villages, less people per village)

Independence	Analysis	Assumptions	Implementation	Critiquing 0000000

Clustered Treatments

- Clustered sampling: To reduce data collection costs
- Clustered treatment: To reduce implementation costs, or to test specific theories
 - Eg. Holding Town Hall meetings does not make sense at the individual level
- If treatment (or sampling) are clustered, we will have dependencies in our errors - closer people are more similar
- So standard errors must be clustered at the level of treatment/sampling (eg. villages)
- In general, causal inference is more efficient with more higher-level units (more villages, less people per village)
 - But there is usually a cost trade-off

Analysis	Assumptions	Implementation	Critiquing
	Analysis 0000000000	AnalysisAssumptions00000000000000000000000000000000000	Analysis Assumptions Implementation 000000000000000000000000000000000000

Do we need to control for covariates in experiments?

Independence	Analysis	Assumptions	Implementation	Critiquing

- Do we need to control for covariates in experiments?
- If randomization worked and the sample size is large, usually not

- Do we need to control for covariates in experiments?
- If randomization worked and the sample size is large, usually not
- Three reasons to include controls:
 - 1. **Small sample**, but note causal inference is now model-dependent

- Do we need to control for covariates in experiments?
- If randomization worked and the sample size is large, usually not
- Three reasons to include controls:
 - 1. **Small sample**, but note causal inference is now model-dependent
 - Chance/residual imbalance on a specific variable which we want to adjust for

- Do we need to control for covariates in experiments?
- If randomization worked and the sample size is large, usually not
- Three reasons to include controls:
 - 1. **Small sample**, but note causal inference is now model-dependent
 - Chance/residual imbalance on a specific variable which we want to adjust for
 - 3. To improve precision, i.e. reduce the standard errors on β
 - The more variation in Y we can explain with covariates, the more certain we can be on the effect of D

Independence	Analysis	Assumptions	Implementation 00000	Critiquing

- ► Average Treatment Effects are just one summary statistic
 - Treatment effects are not normally constant

Independence	Analysis	Assumptions	Implementation	Critiquing

► Average Treatment Effects are just one summary statistic

- Treatment effects are not normally constant
- Averages can be influenced by outliers

- ► Average Treatment Effects are just one summary statistic
 - Treatment effects are not normally constant
 - Averages can be influenced by outliers
- What if an average effect of +5% income leaves half the population hugely rich and half very poor?

- ► Average Treatment Effects are just one summary statistic
 - Treatment effects are not normally constant
 - Averages can be influenced by outliers
- What if an average effect of +5% income leaves half the population hugely rich and half very poor?
- Average treatment effects are easiest (difference-in-means equals mean-difference)

- ► Average Treatment Effects are just one summary statistic
 - Treatment effects are not normally constant
 - Averages can be influenced by outliers
- What if an average effect of +5% income leaves half the population hugely rich and half very poor?
- Average treatment effects are easiest (difference-in-means equals mean-difference)
- But we can also estimate Quantile treatment effects, eg. the effect of treatment on the bottom 10% of the distribution

00000000000 0000000 0000000 0000000 0000	Independence	Analysis	Assumptions	Implementation	Critiquing
	000000000000	000000000	00000000	00000	0000000

Assume the treatment effect is normally-distributed: $N(\mu = 1, \sigma^2 = 1)$

normally-distributed: $N(\mu = 1, \sigma^2 = 1)$

26/48

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

Experiment: We place a new health centre in half of all communities at random, and want to measure whether the health centre has a bigger effect in poor or rich neighbourhoods

Independence A	Analysis	Assumptions	Implementation	Critiquing
000000000000 O	00000000	00000000	00000	0000000

- Experiment: We place a new health centre in half of all communities at random, and want to measure whether the health centre has a bigger effect in poor or rich neighbourhoods
- ► Analysis: Run a single regression with an interaction between treatment and neighbourhood income

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000		00000000	00000	0000000

- Experiment: We place a new health centre in half of all communities at random, and want to measure whether the health centre has a bigger effect in poor or rich neighbourhoods
- ► **Analysis:** Run a single regression with an interaction between treatment and neighbourhood income
- Result: The health centre boosts health by 20% in rich neighbourhoods and reduces health in poor neighbourhoods by 20%

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000		00000000	00000	0000000

- Experiment: We place a new health centre in half of all communities at random, and want to measure whether the health centre has a bigger effect in poor or rich neighbourhoods
- ► Analysis: Run a single regression with an interaction between treatment and neighbourhood income
- Result: The health centre boosts health by 20% in rich neighbourhoods and reduces health in poor neighbourhoods by 20%
- Interpretation: Does neighbourhood poverty cause health centres to have a negative impact?

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000		00000000	00000	0000000

- Experiment: We place a new health centre in half of all communities at random, and want to measure whether the health centre has a bigger effect in poor or rich neighbourhoods
- ► **Analysis:** Run a single regression with an interaction between treatment and neighbourhood income
- Result: The health centre boosts health by 20% in rich neighbourhoods and reduces health in poor neighbourhoods by 20%
- Interpretation: Does neighbourhood poverty cause health centres to have a negative impact?
 - We cannot interpret the 'moderator' variable as having a causal effect, the different treatment effects could be due to omitted variables or selection

Independence 000000000000	Analysis	Assumptions	Implementation	Critiquing

- Experiment: We place a new health centre in half of all communities at random, and want to measure whether the health centre has a bigger effect in poor or rich neighbourhoods
- Analysis: Run a single regression with an interaction between treatment and neighbourhood income
- Result: The health centre boosts health by 20% in rich neighbourhoods and reduces health in poor neighbourhoods by 20%
- Interpretation: Does neighbourhood poverty cause health centres to have a negative impact?
 - We cannot interpret the 'moderator' variable as having a causal effect, the different treatment effects could be due to omitted variables or selection
 - Only the health centre was randomly assigned, not neighbourhood income!

Independence	Analysis 000000000	Assumptions •00000000	Implementation	Critiquing

Section 3

Independence	Analysis	Assumptions	Implementation	Critiquing
0000000000000	0000000000	00000000	00000	0000000

1. Compliance with Randomization procedure

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- 1. Compliance with Randomization procedure
- 2. Randomization produced balance on potential outcomes

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

- 1. Compliance with Randomization procedure
- 2. Randomization produced balance on potential outcomes
- 3. No Spillovers (SUTVA)

Analysis 000000000	Assumptions	Implementation	Critiquing
	Analysis 000000000	AnalysisAssumptions0000000000000000000	Analysis Assumptions Implementation 0000000000 00000000 000000

- 1. Compliance with Randomization procedure
- 2. Randomization produced balance on potential outcomes
- 3. No Spillovers (SUTVA)
- 4. Excludability

Analysis 000000000	Assumptions	Implementation	Critiquing
	Analysis 000000000	AnalysisAssumptions0000000000000000000	Analysis Assumptions Implementation 0000000000 00000000 000000

- 1. Compliance with Randomization procedure
- 2. Randomization produced balance on potential outcomes
- 3. No Spillovers (SUTVA)
- 4. Excludability

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- 1. Compliance with Randomization procedure
 - Randomization is unpopular, political, and sometimes resisted

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- 1. Compliance with Randomization procedure
 - Randomization is unpopular, political, and sometimes resisted
 - Need to verify treatment allocation
 - Transparency, documentation

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- 1. Compliance with Randomization procedure
 - Randomization is unpopular, political, and sometimes resisted
 - Need to verify treatment allocation
 - Transparency, documentation
 - And treatment compliance
 - Did anyone assigned to control manage to get treatment?
 - Did anyone assigned to treatment refuse?

Independence A	Analysis	Assumptions	Implementation	Critiquing
000000000000000000000000000000000000000	000000000	00000000	00000	0000000

- 1. Compliance with Randomization procedure
 - Randomization is unpopular, political, and sometimes resisted
 - Need to verify treatment allocation
 - Transparency, documentation
 - And treatment compliance
 - Did anyone assigned to control manage to get treatment?
 - Did anyone assigned to treatment refuse?
 - Design: Double-blind assignment

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- 1. Compliance with Randomization procedure
 - Randomization is unpopular, political, and sometimes resisted
 - Need to verify treatment allocation
 - Transparency, documentation
 - And treatment compliance
 - Did anyone assigned to control manage to get treatment?
 - Did anyone assigned to treatment refuse?
 - Design: Double-blind assignment
 - **Checks:** Qualitative fieldwork

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

- 1. Compliance with Randomization procedure
 - Randomization is unpopular, political, and sometimes resisted
 - Need to verify treatment allocation
 - Transparency, documentation
 - And treatment compliance
 - Did anyone assigned to control manage to get treatment?
 - Did anyone assigned to treatment refuse?
 - Design: Double-blind assignment
 - Checks: Qualitative fieldwork
 - Analysis: More on how to respond to non-compliance next week

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

2. Randomization Produced Balanced Potential Outcomes

Impossible to Test!

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

- 2. Randomization Produced Balanced Potential Outcomes
 - Impossible to Test!
 - But we can test observable pre-treatment covariates

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- 2. Randomization Produced Balanced Potential Outcomes
 - Impossible to Test!
 - But we can test observable pre-treatment covariates
 - If covariates are the same in the treatment and control groups, this variable *cannot* explain any differences in outcomes

- 2. Randomization Produced Balanced Potential Outcomes
 - Impossible to Test!
 - But we can test observable pre-treatment covariates
 - If covariates are the same in the treatment and control groups, this variable *cannot* explain any differences in outcomes
 - If lots of variables are balanced, it's likely potential outcomes are too
- 2. Randomization Produced Balanced Potential Outcomes
 - Impossible to Test!
 - But we can test observable pre-treatment covariates
 - If covariates are the same in the treatment and control groups, this variable *cannot* explain any differences in outcomes
 - If lots of variables are balanced, it's likely potential outcomes are too
 - Check: Normally a difference in means T-test of covariates between treatment and control groups

- 2. Randomization Produced Balanced Potential Outcomes
 - Impossible to Test!
 - But we can test observable pre-treatment covariates
 - If covariates are the same in the treatment and control groups, this variable *cannot* explain any differences in outcomes
 - If lots of variables are balanced, it's likely potential outcomes are too
 - Check: Normally a difference in means T-test of covariates between treatment and control groups
 - Check: Or a Kolmogorov-Smirnov (KS) Test of identical distributions

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- 2. Randomization Produced Balanced Potential Outcomes
 - ▶ What if a balance test comes back with a p-value < 0.05?

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- 2. Randomization Produced Balanced Potential Outcomes
 - ▶ What if a balance test comes back with a p-value < 0.05?
 - ► It probably will!
 - 1. We are testing many variables, so some differences arise by chance

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

- 2. Randomization Produced Balanced Potential Outcomes
 - ▶ What if a balance test comes back with a p-value < 0.05?
 - It probably will!
 - 1. We are testing many variables, so some differences arise by chance
 - 2. We have a large N, so we can detect very small differences

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

- 2. Randomization Produced Balanced Potential Outcomes
 - ▶ What if a balance test comes back with a p-value < 0.05?
 - It probably will!
 - 1. We are testing many variables, so some differences arise by chance
 - 2. We have a large N, so we can detect very small differences
 - Check: For balance, what matters are substantive differences, not so much p-values

- 2. Randomization Produced Balanced Potential Outcomes
 - ▶ What if a balance test comes back with a p-value < 0.05?
 - It probably will!
 - 1. We are testing many variables, so some differences arise by chance
 - 2. We have a large N, so we can detect very small differences
 - Check: For balance, what matters are substantive differences, not so much p-values
 - ► Two safety nets:
 - 1. **Analysis:** We can still include covariates in our analysis, controlling for 'residual' imbalance

- 2. Randomization Produced Balanced Potential Outcomes
 - ▶ What if a balance test comes back with a p-value < 0.05?
 - It probably will!
 - 1. We are testing many variables, so some differences arise by chance
 - 2. We have a large N, so we can detect very small differences
 - Check: For balance, what matters are substantive differences, not so much p-values
 - ► Two safety nets:
 - 1. **Analysis:** We can still include covariates in our analysis, controlling for 'residual' imbalance
 - 2. **Analysis:** We are using p-values in our *analysis*, which take into account 'chance' imbalance

- 2. Randomization Produced Balanced Potential Outcomes
 - ▶ What if a balance test comes back with a p-value < 0.05?
 - It probably will!
 - 1. We are testing many variables, so some differences arise by chance
 - 2. We have a large N, so we can detect very small differences
 - Check: For balance, what matters are substantive differences, not so much p-values
 - ► Two safety nets:
 - 1. **Analysis:** We can still include covariates in our analysis, controlling for 'residual' imbalance
 - 2. **Analysis:** We are using p-values in our *analysis*, which take into account 'chance' imbalance

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	000000000	00000	0000000

3. SUTVA

Stable Unit Treatment Value Assumption = No Spillovers

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

3. SUTVA

Stable Unit Treatment Value Assumption = No Spillovers

Technically, treatment of unit *j* does not affect the potential outcomes for unit *i*

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- 3. SUTVA
 - Stable Unit Treatment Value Assumption = No Spillovers
 - Technically, treatment of unit *j* does not affect the potential outcomes for unit *i*

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- 3. SUTVA
 - Stable Unit Treatment Value Assumption = No Spillovers
 - Technically, treatment of unit *j* does not affect the potential outcomes for unit *i*

- 3. SUTVA
 - Stable Unit Treatment Value Assumption = No Spillovers
 - Technically, treatment of unit *j* does not affect the potential outcomes for unit *i*

 $Y_i(D_i, D_j, D_k, D_l, D_m, D_n, D_o, D_p...) = Y_i(D_i)$

 Spillovers interfere with our control group, so the comparison does not measure the direct effect of a treatment on person i

- 3. SUTVA
 - Stable Unit Treatment Value Assumption = No Spillovers
 - Technically, treatment of unit *j* does not affect the potential outcomes for unit *i*

- Spillovers interfere with our control group, so the comparison does not measure the direct effect of a treatment on person *i*
- But spillovers are common! If you get an award, I might feel more motivated or less motivated

- 3. SUTVA
 - Stable Unit Treatment Value Assumption = No Spillovers
 - Technically, treatment of unit *j* does not affect the potential outcomes for unit *i*

- Spillovers interfere with our control group, so the comparison does not measure the direct effect of a treatment on person *i*
- But spillovers are common! If you get an award, I might feel more motivated or less motivated
- What should we do?

- 3. SUTVA
 - Stable Unit Treatment Value Assumption = No Spillovers
 - Technically, treatment of unit *j* does not affect the potential outcomes for unit *i*

- Spillovers interfere with our control group, so the comparison does not measure the direct effect of a treatment on person i
- But spillovers are common! If you get an award, I might feel more motivated or less motivated
- What should we do?
 - Design: Limit risk of spillovers, eg. leave 20 miles between each unit in sampling
 - Check: Qualitative fieldwork
 - Analysis: Try to measure spillovers

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

Nothing else correlated with treatment affects potential outcomes

Analysis 000000000	Assumptions	Implementation	Critiquing
	Analysis oooooooooo	Analysis Assumptions 0000000000 000000000	Analysis Assumptions Implementation 0000000000 000000000 000000

- Nothing else correlated with treatment affects potential outcomes
- Assignment to treatment causes a 'parallel' treatment

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

Nothing else correlated with treatment affects potential outcomes

- Assignment to treatment causes a 'parallel' treatment
 - Eg. We decide to share information about specific politicians on the radio, but the politicians find out and counter with their own broadcasts

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

Nothing else correlated with treatment affects potential outcomes

Assignment to treatment causes a 'parallel' treatment

- Eg. We decide to share information about specific politicians on the radio, but the politicians find out and counter with their own broadcasts
- Our treatment effect is no longer *only* the effect of our information intervention

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

Nothing else correlated with treatment affects potential outcomes

Assignment to treatment causes a 'parallel' treatment

- Eg. We decide to share information about specific politicians on the radio, but the politicians find out and counter with their own broadcasts
- Our treatment effect is no longer *only* the effect of our information intervention
- ...Or do we want to measure these additional effects?

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	000000000	00000	0000000

 Distinguish between the downstream consequences of treatment and 'parallel' treatments

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	000000000	00000	0000000

 Distinguish between the downstream consequences of treatment and 'parallel' treatments

Downstream ('net') Consequences

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	000000000	00000	0000000

 Distinguish between the downstream consequences of treatment and 'parallel' treatments

Downstream ('net') Consequences

Eg. We give a cash handout to families, and then they also start paying taxes; which explains their changing attitudes to government?

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	000000000	00000	0000000

 Distinguish between the downstream consequences of treatment and 'parallel' treatments

Downstream ('net') Consequences

- Eg. We give a cash handout to families, and then they also start paying taxes; which explains their changing attitudes to government?
- We find zero effect of government investing \$1000 in healthcare on health outcomes, because households responded by reducing their spending by exactly \$1000

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	000000000	00000	0000000

 Distinguish between the downstream consequences of treatment and 'parallel' treatments

Downstream ('net') Consequences

- Eg. We give a cash handout to families, and then they also start paying taxes; which explains their changing attitudes to government?
- We find zero effect of government investing \$1000 in healthcare on health outcomes, because households responded by reducing their spending by exactly \$1000

Parallel Treatments

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

 Distinguish between the downstream consequences of treatment and 'parallel' treatments

Downstream ('net') Consequences

- Eg. We give a cash handout to families, and then they also start paying taxes; which explains their changing attitudes to government?
- We find zero effect of government investing \$1000 in healthcare on health outcomes, because households responded by reducing their spending by exactly \$1000

Parallel Treatments

 Eg. Measurement bias: Researchers give treated units 'the benefit of the doubt' and record higher outcomes for them

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

 Distinguish between the downstream consequences of treatment and 'parallel' treatments

Downstream ('net') Consequences

- Eg. We give a cash handout to families, and then they also start paying taxes; which explains their changing attitudes to government?
- We find zero effect of government investing \$1000 in healthcare on health outcomes, because households responded by reducing their spending by exactly \$1000

Parallel Treatments

- Eg. Measurement bias: Researchers give treated units 'the benefit of the doubt' and record higher outcomes for them
- Or Hawthorne Effects: Participants respond to being studied, not treatment (more next week)

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

 Distinguish between the downstream consequences of treatment and 'parallel' treatments

Downstream ('net') Consequences

- Eg. We give a cash handout to families, and then they also start paying taxes; which explains their changing attitudes to government?
- We find zero effect of government investing \$1000 in healthcare on health outcomes, because households responded by reducing their spending by exactly \$1000

Parallel Treatments

- Eg. Measurement bias: Researchers give treated units 'the benefit of the doubt' and record higher outcomes for them
- Or Hawthorne Effects: Participants respond to being studied, not treatment (more next week)

Design: Careful specification of treatment and control

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

Downstream Consequence of Treatment

Downstream Consequence of Treatment

Parallel Treatment

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	0000	0000000

Section 4

Implementation

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

Implementing Field Experiments

► How do we randomize?

 Hard! We can't just 'pick' treated units off the top of our heads

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	0000	0000000

Implementing Field Experiments

How do we randomize?

- Hard! We can't just 'pick' treated units off the top of our heads
- Computers are deterministic

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	0000	0000000

Implementing Field Experiments

How do we randomize?

- Hard! We can't just 'pick' treated units off the top of our heads
- Computers are deterministic
- The best we can do is to use atmospheric noise or radioactive decay
| Independence | Analysis | Assumptions | Implementation | Critiquing |
|--------------|-----------|-------------|----------------|------------|
| 00000000000 | 000000000 | 00000000 | 0000 | 0000000 |

How do we randomize?

- Hard! We can't just 'pick' treated units off the top of our heads
- Computers are deterministic
- The best we can do is to use atmospheric noise or radioactive decay
- ► In the real world, randomization is hard
 - Pressure to help the most needy

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	0000	0000000

How do we randomize?

- Hard! We can't just 'pick' treated units off the top of our heads
- Computers are deterministic
- The best we can do is to use atmospheric noise or radioactive decay
- In the real world, randomization is hard
 - Pressure to help the most needy
 - Political pressure

How do we randomize?

- Hard! We can't just 'pick' treated units off the top of our heads
- Computers are deterministic
- The best we can do is to use atmospheric noise or radioactive decay
- In the real world, randomization is hard
 - Pressure to help the most needy
 - Political pressure
 - We don't want to be guinea pigs!

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	0000	0000000

► How do we randomize?

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- How do we randomize?
- Three options to assign treatment and control 'independent' of potential outcomes:

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- How do we randomize?
- Three options to assign treatment and control 'independent' of potential outcomes:
 - We have N units and want equal probability of treatment for each:
 - 1. Flip a coin for every unit so every unit has probability 0.5 of treatment

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- How do we randomize?
- Three options to assign treatment and control 'independent' of potential outcomes:
 - We have N units and want equal probability of treatment for each:
 - 1. Flip a coin for every unit so every unit has probability 0.5 of treatment
 - 2. Randomize the order of the units and assign the first $\frac{N}{2}$ units to treatment

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- How do we randomize?
- Three options to assign treatment and control 'independent' of potential outcomes:
 - We have N units and want equal probability of treatment for each:
 - 1. Flip a coin for every unit so every unit has probability 0.5 of treatment
 - 2. Randomize the order of the units and assign the first $\frac{N}{2}$ units to treatment
 - 3. Pair similar units and flip a coin to assign one from each pair to treatment

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- How do we randomize?
- Three options to assign treatment and control 'independent' of potential outcomes:
 - We have N units and want equal probability of treatment for each:
 - 1. Flip a coin for every unit so every unit has probability 0.5 of treatment
 - 2. Randomize the order of the units and assign the first $\frac{N}{2}$ units to treatment
 - 3. Pair similar units and flip a coin to assign one from each pair to treatment
- What's the difference between these three options?

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- How do we randomize?
- Three options to assign treatment and control 'independent' of potential outcomes:
 - We have N units and want equal probability of treatment for each:
 - 1. Flip a coin for every unit so every unit has probability 0.5 of treatment
 - 2. Randomize the order of the units and assign the first $\frac{N}{2}$ units to treatment
 - 3. Pair similar units and flip a coin to assign one from each pair to treatment
- What's the difference between these three options?
- ► What % treated? 50:50 is usually most efficient

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- How do we randomize?
- Three options to assign treatment and control 'independent' of potential outcomes:
 - We have N units and want equal probability of treatment for each:
 - 1. Flip a coin for every unit so every unit has probability 0.5 of treatment
 - 2. Randomize the order of the units and assign the first $\frac{N}{2}$ units to treatment
 - 3. Pair similar units and flip a coin to assign one from each pair to treatment
- What's the difference between these three options?
- ▶ What % treated? 50:50 is usually most efficient
- ► To actually randomize, use the 'randomizr' package

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

► Blocking

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

Blocking

Randomization is inefficient and risky

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- Randomization is *inefficient* and risky
- We know we need balance on key covariates, eg. gender, so why leave this to chance??

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- Randomization is *inefficient* and risky
- We know we need balance on key covariates, eg. gender, so why leave this to chance??
 - We can measure these variables and *enforce* balance (50% female in both treatment and control)

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- Randomization is inefficient and risky
- We know we need balance on key covariates, eg. gender, so why leave this to chance??
 - We can measure these variables and *enforce* balance (50% female in both treatment and control)
 - Blocking means randomizing within fixed groups

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- Randomization is inefficient and risky
- We know we need balance on key covariates, eg. gender, so why leave this to chance??
 - We can measure these variables and *enforce* balance (50% female in both treatment and control)
 - Blocking means randomizing within fixed groups
 - ► Eg. We have a sample size of 4000, half male, half female

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

Blocking

- Randomization is *inefficient* and risky
- We know we need balance on key covariates, eg. gender, so why leave this to chance??
 - We can measure these variables and *enforce* balance (50% female in both treatment and control)
 - Blocking means randomizing within fixed groups
 - ► Eg. We have a sample size of 4000, half male, half female

Without Blocking:

	М	F
Treated	1042	958
Control	972	1028

With Blocking:

	М	F
Treated	1000	1000
Control	1000	1000

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

Blocking

- Randomization is *inefficient* and risky
- We know we need balance on key covariates, eg. gender, so why leave this to chance??
 - We can measure these variables and *enforce* balance (50% female in both treatment and control)
 - Blocking means randomizing within fixed groups
 - ► Eg. We have a sample size of 4000, half male, half female

Without Blocking:

	М	F	
Treated	1042	958	
Control	972	1028	

With Blocking:

	М	F
Treated	1000	1000
Control	1000	1000

"Block what you can; randomize what you cannot"

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

Blocking

- Randomization is *inefficient* and risky
- We know we need balance on key covariates, eg. gender, so why leave this to chance??
 - We can measure these variables and *enforce* balance (50% female in both treatment and control)
 - Blocking means randomizing within fixed groups
 - ► Eg. We have a sample size of 4000, half male, half female

Without Blocking:

-			
	М	F	
Treated	1042	958	
Control	972	1028	

With Blocking:

	М	F
Treated	1000	1000
Control	1000	1000

- "Block what you can; randomize what you cannot"
- We focus on within-block variation: $Y_i = \alpha + D_i + B_i + \epsilon_i$

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

► Random treatment vs. Random samples

Random Treatment

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

Random treatment vs. Random samples

Random Treatment

 Representative potential outcomes

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

Random treatment vs. Random samples

Random Treatment

Random Samples

- Representative potential outcomes
- Causal Inference

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

Random treatment vs. Random samples

Random Treatment

- Representative potential outcomes
- Causal Inference

Random Samples

 Sample representative of larger population

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

Random treatment vs. Random samples

Random Treatment

- Representative potential outcomes
- Causal Inference

Random Samples

- Sample representative of larger population
- ► Statistical Inference

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

Random treatment vs. Random samples

Random Treatment

- Representative potential outcomes
- Causal Inference

Random Samples

- Sample representative of larger population
- ► Statistical Inference
- Both work in the same way randomization avoids selection (into the data/treatment)

Assumptions	Implementation	Critiquing ●○○○○○○
	Assumptions	Assumptions Implementation

Section 5

Critiquing

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	000000

Critiquing Field Experiments

Field experiments are easy to evaluate. What can go wrong??

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

► We know that *D* causes *Y* in this population.

Analysis 000000000	Assumptions	Implementation 00000	Critiquing
	Analysis 000000000	AnalysisAssumptions0000000000000000000	Analysis Assumptions Implementation 000000000 000000000 00000

We know that D causes Y in this population. So what? What did we learn about political science?

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- We know that D causes Y in this population. So what? What did we learn about political science?
 - We know that giving citizens health insurance makes them more likely to vote.

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- We know that D causes Y in this population. So what? What did we learn about political science?
 - We know that giving citizens health insurance makes them more likely to vote. Why?? How?? What is the mechanism?

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing
				1

- We know that D causes Y in this population. So what? What did we learn about political science?
 - We know that giving citizens health insurance makes them more likely to vote. Why?? How?? What is the mechanism?
 - Due to increased wealth? Increased trust in government? More mobility?

- We know that D causes Y in this population. So what? What did we learn about political science?
 - We know that giving citizens health insurance makes them more likely to vote. Why?? How?? What is the mechanism?
 - Due to increased wealth? Increased trust in government? More mobility?
- What theory is this testing?

- We know that D causes Y in this population. So what? What did we learn about political science?
 - We know that giving citizens health insurance makes them more likely to vote. Why?? How?? What is the mechanism?
 - Due to increased wealth? Increased trust in government? More mobility?
- What theory is this testing? Does it reject any theory?

- We know that D causes Y in this population. So what? What did we learn about political science?
 - We know that giving citizens health insurance makes them more likely to vote. Why?? How?? What is the mechanism?
 - Due to increased wealth? Increased trust in government? More mobility?
- What theory is this testing? Does it reject any theory?
- We want to test theories, not treatments
| Independence | Analysis | Assumptions | Implementation | Critiquing |
|--------------|-----------|-------------|----------------|------------|
| 000000000000 | 000000000 | 00000000 | 00000 | 0000000 |
| | | | | |

- 2. Generalizability of Context
 - Our causal conclusions are restricted to the population we drew our sample from

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- 2. Generalizability of Context
 - Our causal conclusions are restricted to the population we drew our sample from
 - Income makes attitudes to redistribution more negative in the USA

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- 2. Generalizability of Context
 - Our causal conclusions are restricted to the population we drew our sample from
 - Income makes attitudes to redistribution more negative in the USA
 - What is the effect in Angola?

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- 2. Generalizability of Context
 - Our causal conclusions are restricted to the population we drew our sample from
 - Income makes attitudes to redistribution more negative in the USA
 - What is the effect in Angola?
 - Secondary school education leads to more conservative voting

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

- 2. Generalizability of Context
 - Our causal conclusions are restricted to the population we drew our sample from
 - Income makes attitudes to redistribution more negative in the USA
 - What is the effect in Angola?
 - Secondary school education leads to more conservative voting
 - What is the effect of university education?

- 2. Generalizability of Context
 - Our causal conclusions are restricted to the population we drew our sample from
 - Income makes attitudes to redistribution more negative in the USA
 - What is the effect in Angola?
 - Secondary school education leads to more conservative voting
 - What is the effect of university education?
 - Yes, you randomly sampled and randomly assigned treatment, but not in the full population we want to learn about

- 2. Generalizability of Context
 - Our causal conclusions are restricted to the population we drew our sample from
 - Income makes attitudes to redistribution more negative in the USA
 - What is the effect in Angola?
 - Secondary school education leads to more conservative voting
 - What is the effect of university education?
 - Yes, you randomly sampled and randomly assigned treatment, but not in the full population we want to learn about
 - The places that agree to field experiments are not representative

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

- 3. Generalizability of Treatment
 - The effect of an education intervention in an experiment in Butantã raised test scores by 20%, and was evaluated and verified by USP

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

- 3. Generalizability of Treatment
 - The effect of an education intervention in an experiment in Butantã raised test scores by 20%, and was evaluated and verified by USP
 - The government expands the program nationwide. Do Brazilian students' scores improve on average by 20%?

Independence	Analysis	Assumptions	Implementation	Critiquing
00000000000	000000000	00000000	00000	0000000

- 3. Generalizability of Treatment
 - The effect of an education intervention in an experiment in Butantã raised test scores by 20%, and was evaluated and verified by USP
 - The government expands the program nationwide. Do Brazilian students' scores improve on average by 20%?
 - Three problems:
 - 1. **Implementation Varies:** Implementing at scale is **hard**, costly and requires delegation to less motivated and skilled actors.

- 3. Generalizability of Treatment
 - The effect of an education intervention in an experiment in Butantã raised test scores by 20%, and was evaluated and verified by USP
 - The government expands the program nationwide. Do Brazilian students' scores improve on average by 20%?
 - Three problems:
 - Implementation Varies: Implementing at scale is hard, costly and requires delegation to less motivated and skilled actors.
 - 2. Ownership and Excludability:
 - Telling someone to implement an intervention is different from working with a self-motivated actor who designed the intervention.

- 3. Generalizability of Treatment
 - The effect of an education intervention in an experiment in Butantã raised test scores by 20%, and was evaluated and verified by USP
 - The government expands the program nationwide. Do Brazilian students' scores improve on average by 20%?
 - Three problems:
 - 1. **Implementation Varies:** Implementing at scale is **hard**, costly and requires delegation to less motivated and skilled actors.
 - 2. Ownership and Excludability:
 - Telling someone to implement an intervention is different from working with a self-motivated actor who designed the intervention.
 - Knowing you were randomly assigned to treatment rather than choosing treatment changes political ownership, perceptions and motivation.

- 3. Generalizability of Treatment
 - The effect of an education intervention in an experiment in Butantã raised test scores by 20%, and was evaluated and verified by USP
 - The government expands the program nationwide. Do Brazilian students' scores improve on average by 20%?
 - Three problems:
 - 1. Implementation Varies: Implementing at scale is hard, costly and requires delegation to less motivated and skilled actors.
 - 2. Ownership and Excludability:
 - Telling someone to implement an intervention is different from working with a self-motivated actor who designed the intervention.
 - Knowing you were randomly assigned to treatment rather than choosing treatment changes political ownership, perceptions and motivation
 - General Equilibrium Effects: Average test scores went from 70% to 90%, so the exam board readjusted the test and made it harder. 46/48

Independence	Analysis	Assumptions	Implementation	Critiquing
000000000000	000000000	00000000	00000	0000000

3. Generalizability of Treatment

► Eg. The Millennium Villages Project

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing ooooo●o

3. Generalizability of Treatment

- ► Eg. The Millennium Villages Project
- WB/UN/Columbia University tried to invest USD\$120 per person in 14 African villages

Analysis 000000000	Assumptions	Implementation	Critiquing
	Analysis 000000000	AnalysisAssumptions0000000000000000000	Analysis Assumptions Implementation 0000000000 000000000 000000

- 3. Generalizability of Treatment
 - ► Eg. The Millennium Villages Project
 - WB/UN/Columbia University tried to invest USD\$120 per person in 14 African villages
 - Mixed but positive results: crop yields increased 85-350%, malaria reduced 50% compared to controls

- 3. Generalizability of Treatment
 - ► Eg. The Millennium Villages Project
 - WB/UN/Columbia University tried to invest USD\$120 per person in 14 African villages
 - Mixed but positive results: crop yields increased 85-350%, malaria reduced 50% compared to controls
 - But:
 - 1. Sites were not representative (close to main roads and cities so they're easy to visit)

- 3. Generalizability of Treatment
 - ► Eg. The Millennium Villages Project
 - WB/UN/Columbia University tried to invest USD\$120 per person in 14 African villages
 - Mixed but positive results: crop yields increased 85-350%, malaria reduced 50% compared to controls
 - But:
 - 1. Sites were not representative (close to main roads and cities so they're easy to visit)
 - 2. Treatment could not be scaled (Every village cannot get visits from Columbia professors twice a year)

- 3. Generalizability of Treatment
 - ► Eg. The Millennium Villages Project
 - WB/UN/Columbia University tried to invest USD\$120 per person in 14 African villages
 - Mixed but positive results: crop yields increased 85-350%, malaria reduced 50% compared to controls
 - But:
 - 1. Sites were not representative (close to main roads and cities so they're easy to visit)
 - 2. Treatment could not be scaled (Every village cannot get visits from Columbia professors twice a year)
 - 3. And politics was ignored (No implementation unless you give locals responsibility, but then you lose control)

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing

4. Skewed Learning

Research focuses on where experiments are most *possible*, not where it is most needed

Independence	Analysis 000000000	Assumptions	Implementation	Critiquing
				i i i i i i i i i i i i i i i i i i i

4. Skewed Learning

- Research focuses on where experiments are most *possible*, not where it is most needed
- Selection bias in research findings