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Controlling for Confounding Which Variables to Control For

Classification of Research Designs

Independence
of Treatment
Assignment

Researcher Con-
trols Treatment
Assignment?

Controlled
Experiments

Field Experiments Ø Ø

Survey and Lab Experiments Ø Ø

Natural
Experiments

Natural Experiments Ø

Instrumental Variables Ø

Discontinuities Ø

Observational
Studies

Difference-in-Differences

Controlling for Confounding

Matching

Comparative Cases and Process
Tracing
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Controlling for Confounding Which Variables to Control For

Section 1

Controlling for Confounding
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Controlling for Confounding Which Variables to Control For

Controlling for Confounding

É What if we don’t have repeated observations over time for
the same units?

É Or what if everyone is treated at the same point in time?

É We cannot use Difference-in-Differences

É For cross-sectional observational studies, the next-best
alternative is...

É Controls!
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Controlling for Confounding Which Variables to Control For

Controlling for Confounding

É What we know: Adding control variable X changes the
comparison we are making:
É Treatment is associated with higher values of the

Outcome...for units with the same values of X

É What we don’t yet know: When does controlling allow us
to say:
É Treatment causes higher values of the Outcome?
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Controlling for Confounding Which Variables to Control For

Controlling for Confounding
É Up until now causal estimates have required treatment

assignment to be independent of potential outcomes

(y0, y1) ⊥ D

É But it’s also acceptable if treatment assignment is
conditionally independent of potential outcomes

(y0, y1) ⊥ D|X

É After controlling for X, treatment is independent of potential
outcomes: ’No unmeasured confounders’
É This is an assumption
É We cannot directly test it
É We have to make an argument and provide supporting

evidence
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Controlling for Confounding Which Variables to Control For

Controlling for Confounding

É Why does controlling for confounders help provide
conditional independence?

É We need to know what problem - what bias - confounders
create:
É The problem is of ’fake correlations’ - D and Y look like they’re

related, even though treatment does not affect the outcome.

É Controlling removes these fake correlations by only
comparing D and Y for units with the same value of X
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Controlling for Confounding Which Variables to Control For

Causal Diagrams (DAGs)

Confounder

Treatment

Outcome
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Controlling for Confounding
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Controlling for Confounding
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Controlling for Confounding Which Variables to Control For

Controlling for Confounding
É If we omit a confounding variable, we bias our regression estimate:

É ’True’ regression with all confounders:

Y = α + βD + γX + ε

É The ’wrong’ regression with a missing confounder:

Y = α + βD + ε

É What happens to our coefficient estimate?

X = ψ + δD + ε

Y = α + βD + γ(ψ + δD + ε) + ε

Y = α + D(β + γδ) + γ(ψ + ε) + ε

É So the coefficient we estimate is wrong by this amount:

βrong = βtre + γδ
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Controlling for Confounding

É What does controlling do?

É It means removing the variation in the data due to the
confounder

É Equivalently, it means separating our data for each value of
the confounder: Subclassification

É Then, within each group, the confounder is constant and
can’t affect the relationship between D and Y.

É We have created balance between the treated and control
groups on the confounder
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Controlling for Confounding

É We receive a dataset with twenty variables: D, Y and 18
more.
É Which variables should we include as controls?

É We usually should NOT include all of them
É Only the variables necessary to stop confounding
É Including unnecessary variables can produce bias
É "Bad controls"/"Post-treatment Bias"

É We lose power (degrees of freedom) for every control we add
É And additional variables reduce overlap (increase

model-dependence)
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Section 2

Which Variables to Control For
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Controlling for Confounding Which Variables to Control For

Causal Diagrams (DAGs)

É To know which variables to control for, it helps to draw a
causal diagram

É A Directed Acyclical Graph (DAG)
É Arrows only in one direction
É No circular loops!
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Causal Diagrams (DAGs)

Treatment Outcome
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Controlling for Confounding Which Variables to Control For

Causal Diagrams (DAGs)

É Causation is like Water, flowing along the graph
É We want to focus on one ’flow’ of causation from treatment to

outcomes

É Avoiding mixing with the other flows of causation in the
network
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Causal Diagrams (DAGs)

Confounder

Treatment

Outcome
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Controlling for Confounding Which Variables to Control For

Causal Diagrams (DAGs)

É Three Rules to achieve Conditional Independence:
1. Include as controls enough variables to block all back-door

paths from treatment to the outcome

2. Exclude any variables that are post-treatment
3. Exclude any variables that are colliders
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1. Back-door Paths

É To identify back-door paths:

É Start with an arrow pointing at treatment
É Trace the path ’backwards’ (the direction of the arrows

doesn’t matter) until you reach the outcome
É Repeat for every possible path from treatment to outcome

É Block back-door paths by controlling for any variable
along the path
É Identify the Minimum set of controls that blocks All

back-door paths
É This achieves conditional independence of treatment from

potential outcomes!
É Include these as control variables in our regression
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Controlling for Confounding Which Variables to Control For

2. Post-treatment Variables

É Including post-treatment variables will introduce bias

É Because variables measured ’after’ treatment can also be
affected by treatment

É They’re not confounders, but mechanisms/mediating
variables

É Controlling for them changes the definition of the causal
effect we are estimating
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Controlling for Confounding Which Variables to Control For

3. Colliders

É Colliders are variables on back-door paths which have
arrows pointing both into them and out of them

É The water ’collides’ in both directions so the source
variables are not correlated, and produce no bias

É But if we do accidentally ’control’ for a collider we introduce
a bias in the relationship between D and Y

É So we must avoid controlling for colliders

É Hard!
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Controlling for Confounding Which Variables to Control For

Example adapted from Morgan and Winship, p.72
1. List all of the back-door paths from D to Y

2. Identify any post-treatment variables: Do NOT include as controls
3. Identify any back-door paths with collider variables: Mark these as

already blocked
4. Find a minimum set of variables that blocks all remaining back-door paths
5. Double-check your minimum set of control variables does not contain any

post-treatment or collider variables

Treatment

Outcome

M

B

C

A

U

V
F

G
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Controlling for Confounding Which Variables to Control For

Causal Diagrams (DAGs)

É Three Rules to achieve Conditional Independence:
1. Include as controls enough variables to block all back-door

paths from treatment to the outcome

É In practice, variables which theory and past studies identify as
potential confounders

2. Exclude any variables that are post-treatment
É In practice, know when your variables were measured

3. Exclude any variables that are colliders
É In practice, don’t include unnecessary controls
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